Этот процесс можно сравнить с печатанием фотокарточек с негатива. Различие здесь только в том, что в случае ДНК любую цепь можно рассматривать как «негатив» для другой, так что в этом смысле словно бы и нет разницы между позитивом и негативом. Совсем недавно с помощью электронного микроскопа удалось даже заснять ДНК в момент репликации.
Такова была гипотеза. Но биологи сразу заметили, что перед ней неизбежно встанет масса трудностей, проистекающих в первую очередь из громадной длины молекул ДНК. В одной клетке человека вся ДНК, распределенная в 46 хромосомах, содержит что-то около миллиарда пар оснований; ее полная длина достигает едва ли не метра. А если составить цепочку из ДНК всех клеток одного человека, то она, пожалуй, сможет протянуться через всю солнечную систему. И вот почти целый метр ДНК должен быть как-то свернут внутри одной клетки, размеры которой в поперечнике обычно составляют не более тысячной доли сантиметра. Если гипотеза Уотсона-Крика верна, то в процессе репликации вся эта ДНК должна быть раскручена на одиночные нити. Всякий, кто хотя бы раз пробовал расплести длинный шнур, состоящий из двух электрических проводов, сразу же поймет, почему биологи увидели здесь проблему: непонятно, что помешает еще до конца не расплетенной цепи спутаться в безнадежный клубок.
Поэтому было очень важно придумать такой решающий эксперимент, который мог бы служить проверкой предложенной гипотезы. Такой эксперимент задумали и успешно осуществили Меселсон и Сталь. Они выращивали определенный вид бактерий в искусственной среде, содержащей тяжелый азот (азот-15) — изотоп азота, атомы которого тяжелее атомов обычного азота (азот-14). Через некоторое время у этих бактерий весь азот в основаниях ДНК был представлен только тяжелым азотом. Как можно подсчитать, плотность такой ДНК должна почти на 1 % превышать плотность нормальной ДНК. Вырастив достаточное количество бактерий, содержащих тяжелую ДНК, Меселсон и Сталь переносили их на среду, содержащую обычный легкий азот (азот-14). На новой среде бактерии размножались путем деления, причем теперь для синтеза новой ДНК они могли использовать только легкий азот. Далее проводился анализ ДНК потомства. Что должно было получиться? Если гипотеза Уотсона-Крика верна, то в первом поколении потомство перенесенных бактерий должно содержать, так сказать, «полутяжелую» ДНК, которая легче, чем родительская, но тяжелее обычной, поскольку в каждом молекуле этой ДНК должна была присутствовать одна тяжелая и одна обычная цепь. Плотность такой ДНК должна примерно на 0,5 % превышать плотность нормальной ДНК. Выделенная ДНК будет представлять собой смесь ДНК двух плотностей. Половина всей ДНК должна иметь нормальную плотность, поскольку ее молекулы будут составлены из двух легких цепей, остальная ДНК будет «полутяжелой», т. е. содержащей по одной легкой и по одной тяжелой цепи.