Вот что предсказывает теория. А как проверить эти предсказания? Для этого надо найти чувствительный метод измерения плотности ДНК, который позволял бы обнаруживать различия в плотности ДНК, составляющие 0,5 или 1 %. Наиболее подходящим оказался метод градиентной колонки. Градиентная колонка — это колонка с жидкостью переменной плотности: на дне плотность жидкости наибольшая, на поверхности наименьшая. Если в такую колонку бросить какой-либо предмет, то он под действием силы тяжести будет погружаться в жидкость до тех пор, пока его средняя плотность не сравняется с плотностью непосредственно прилегающих к нему слоев жидкости. В принципе этим методом можно воспользоваться для того, чтобы отделить тяжелую ДНК от легкой: в колонке они должны располагаться на разной высоте. Но так как различия в плотности здесь очень малы, необходимо повысить чувствительность метода, насколько это возможно; на практике колонку переменой плотности создают путем быстрого вращения в центрифуге раствора какой-нибудь соли. Мы как бы создаем довольно высокую искусственную «силу тяжести». (Примерно так же тренируют космонавтов: чтобы приучить их к большим перегрузкам, их сажают в кресло, которое быстро вращается по кругу большого радиуса.) Соль при вращении стремится сместиться ближе к дну колонки, так что в этом направлении плотность раствора постепенно возрастает. Если в колонку добавить ДНК, то она сместится туда, где плотность раствора совпадает с ее собственной плотностью. Опыты Меселсона и Сталя: сначала показано, где в кювете центрифуги располагается тяжелая ДНК, выделенная из бактерий до их переноса на обычную среду. Бактерии первого поколения, выращенные на среде с легким азотом, содержат ДНК, состоящую наполовину из легких и наполовину из тяжелых цепей, а бактерии второго поколения содержат смесь такой «полутяжелой» и нормальной ДНК. Другими словами, поведение ДНК точно соответствует предсказаниям, сделанным на основе гипотезы Уотсона-Крика. Этот эксперимент по своему содержанию необычайно прост и дает совершенно однозначные результаты — классический пример решающего эксперимента! После того как эти результаты были опубликованы, подавляющее большинство биологов вынуждено было признать, что гипотеза Уотсона — Крика должна быть верна, и хотя до сих пор не вполне ясно, как происходит раскручивание ДНК, нет никаких сомнений, что предложенный механизм репликации отражает реальные события, происходящие в процессе клеточного деления.
На этом мы заканчиваем наш рассказ о первой функции ДНК — функции самовоспроизведения. Мы видели, как построенная Уотсоном и Криком двуспиральная модель ДНК позволила предсказать способ репликации, а потом мы убедились, что предсказание это подтверждается очень простым и вполне доказательным экспериментом. В следующих двух главах мы рассмотрим две другие функции ДНК. Во-первых, мы обсудим, как ДНК управляет синтезом белков, как наследственная информация преобразуется в структуру ферментов и других белков, синтезируемых в дочерних клетках. И во-вторых, мы постараемся понять, в каком виде информация хранится в самой ДНК, с помощью какого кода она там записана?
Глава 7
Посланцы генов
В главе 6 была описана двуспиральная модель ДНК. Мы узнали, как с ее помощью удалось объяснить правила спаривания оснований и рентгенографические данные. Вслед за тем мы увидели, что эта модель автоматически подсказывает нам замечательно простую схему репликации ДНК — процесса, которым сопровождается появление каждого нового поколения. Естественно предположить, что наследственная информация, передаваемая от поколения к поколению, содержится в последовательности основания ДНК, поскольку в остальном молекула ДНК по всей своей длине одинакова, элементы главной цепи ДНК повторяются без каких бы то ни было вариаций. Мы вынуждены предположить, что последовательность оснований А, Г, Ц и Т носит характер закодированного сообщения, которое и заключает в себе наследственную информацию. Проблему конкретных особенностей кода мы отложим до следующей главы. Пока что будем просто считать, что какой-то код действительно существует, а обсуждать будем другую проблему — проблему выражения закодированной информации. Нас будет интересовать способ, посредством которого наследственная информация управляет развитием клеток потомства, — способ воплощения в потомстве совокупности признаков, определяющих данный вид.
Принимая во внимание гипотезу «один ген — один фермент», а также учитывая то обстоятельство, что ДНК содержит линейную последовательность оснований, а белок представляет собой линейную последовательность аминокислот, мы можем сформулировать проблему иначе: как последовательность оснований ДНК, содержащейся в хромосомах, преобразуется в последовательность аминокислот множества различных белков, которых в любой клетке насчитывается несколько тысяч?