Читаем Космическая технология и производство полностью

Рис. 8. Патрон для эксперимента «Универсальная печь» (1 — графитовый нагревательный блок; 2 — графитовый тепловой вкладыш; 3 — оболочка из нержавеющей стали; 4 — изоляция; 5 — запорный механизм; 6 — блок отвода тепла; 7 — медный тепловой вкладыш)


Анализ доставленных на Землю образцов показал, что, вопреки ожиданиям, после переплава и затвердевания в условиях, близких к невесомости, распределение примесей в поперечном сечении образца стало менее однородным. При этом более легкая примесь (кремний) сместилась в одном направлении по диаметру образца, а более тяжелая (сурьма) — в противоположном. Такое перераспределение примесей в образце, возможно, связано с тем, что именно по диаметру ампулы действовали во время эксперимента малые ускорения, обусловленные работой двигателей системы ориентации и стабилизации корабля. Однако конкретный механизм процессов, приведших к ухудшению однородности распределения примеси в этом эксперименте, в настоящее время однозначно не установлен.

Возможно, что для того диапазона ускорений, которые наблюдались на борту корабля «Аполлон» во время эксперимента «Универсальная печь», конвекционные течения были особенно интенсивны. Выполненные советскими учеными с помощью ЭВМ расчеты процессов тепло- и массопереноса для условий, соответствующих этому эксперименту, подтвердили такую возможность. В этом случае перераспределение примесей в расплаве и ухудшение однородности образца после его перекристаллизации в космосе следует связать именно с возникшими в расплаве конвекционными течениями. Но возможны и другие объяснения результатов эксперимента «Универсальная печь».

Рассмотренные эксперименты показали, что для правильной организации в космосе процессов массопереноса необходимо обеспечить такие условия, когда конвекционными эффектами можно пренебречь. В противном случае в зависимости от конкретных условий возможно как повышение, так и ухудшение однородности распределения примесей в исследуемых материалах.

Если в приведенных примерах необходимо было проанализировать возможное влияние на процессы тепло- и массопереноса естественной конвекции, которая зависит от величины малого ускорения, действующего на космический аппарат, то в других случаях следует учитывать конвекционные эффекты, не зависящие от ускорений. Укажем в качестве примера на термокапиллярную конвекцию, которая в некоторых случаях также может явиться причиной ухудшения структуры материала, получаемого в космосе.

Например, при зонной плавке, используемой для выращивания кристаллов, существует поверхность раздела между жидкостью и находящимся над ней насыщенным паром. Вдоль этой поверхности возможно изменение температуры, а поскольку от нее зависит поверхностное натяжение, то в этих условиях может возникнуть конвекционное течение. Когда перепад температуры начинает превышать некоторую критическую величину, в расплаве возникают конвекционные токи, носящие колебательный характер и ведущие к неравномерному поступлению примеси в зону кристаллизации. В результате примесь внутри кристалла будет распределена также неоднородно (явление полосчатости). По сравнению со свободной конвекцией, интенсивность которой зависит от уровня ускорений на космическом аппарате, преодоление термокапиллярных течений требует принятия других мер (ограничение величины перепадов температуры и т. д.).

Рассмотренные выше экспериментальные и теоретические исследования процессов переноса вещества в условиях, близких к невесомости, относились к расплавам. Однако в этих условиях и для газообразного состояния вещества процессы переноса могут иметь свои особенности. Приведем в качестве примера также эксперимент на станции «Скайлэб», в котором исследовалось выращивание кристаллов полупроводников — селенида и теллурида германия — из газовой фазы. Этот метод основан на том, что на горячем конце запаянной ампулы вещество, находящееся в газовой фазе (иодистый германий), реагирует с поверхностью твердого исходного материала, а затем под действием перепада температуры диффундирует в сторону холодного конца ампулы. Там, в более холодной зоне, происходят конденсация паров на затравочном кристалле и образование нужных кристаллов. Ожидалось, что скорость массопереноса продукта в газовой фазе будет определяться чисто диффузионными процессами. В земных условиях эта скорость значительно возрастает из-за конвекции. Этот эксперимент показал, что фактическая скорость переноса массы в космических условиях ниже наблюдаемой на Земле, но выше величины, рассчитанной в чисто диффузионном приближении.

Перейти на страницу:

Все книги серии Новое в жизни, науке, технике. Серия «Космонавтика, астрономия»

Похожие книги

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература
Что? Где? Когда?
Что? Где? Когда?

Книга известных игроков телевизионных клубов «Что? Где? Когда?» и «Брэйн ринг», членов Международной ассоциации клубов «Что? Где? Когда?» популяризирует интеллектуальные игры как эффективный способ занятия досуга и развития творческих способностей людей всех возрастов.Авторы раскрывают секреты составления вопросов, знакомят с методикой тренировки интеллектуальных способностей, делятся богатым опытом проведения турниров команд «Что? Где? Когда?» и «Брэйн ринг».В сборнике приведены вопросные материалы турниров, организованных московскими клубами «Что? Где? Когда?» в сезоны 1997-1999 гг.

Владимир Григорьевич Белкин , Евгений Венедиктович Алексеев , Ирина Константиновна Тюрикова , Максим Оскарович Поташев , Наиля Адилевна Курмашева

Научная литература / Прочая научная литература / Образование и наука