Читаем Космическая технология и производство полностью

Прибор «Реакция» состоял из корпуса и двух контейнеров с цилиндрическими экзопакетами[4], внутри каждого из которых размещалась трубка из нержавеющей стали с надетой на нее муфтой (рис. 9). В зазоре между трубкой и муфтой помещался марганец-никелевый припой, который при проведении эксперимента плавился, растекался вдоль зазора, а при охлаждении затвердевал и обеспечивал получение прочных паяных соединений муфты с трубкой. Как показало исследование паяных образцов, доставленных на Землю, жидкий припой смочил поверхности и перетек по капиллярному зазору, образованному между внутренней поверхностью муфты и трубкой, из кольцевой полости большего размера в кольцевую полость меньшего размера (рис. 10).

Таким образом, с помощью прибора «Реакция» была продемонстрирована возможность перетекания жидкости под действием сил поверхностного натяжения. Этот способ управления потоками жидкости может оказаться полезным практически, например, для производства в космосе литых изделий сложной формы. Сходные эксперименты по исследованию растекания жидкого металла (олово) вдоль медных изложниц сложной формы под действием сил поверхностного натяжения были выполнены также при запуске в СССР высотной ракеты в марте 1976 г.

Рис. 10. Поперечный (а) и продольный (б) разрезы паяного соединения в приборе «Реакция»


Процессы кристаллизации. Важнейший процесс получения материалов в космических условиях — это их кристаллизация. Монокристаллы можно получать из растворов, расплавов или из паровой фазы. На различных космических аппаратах исследовались особенности всех трех способов получения кристаллов. Рассмотрим в качестве примера эксперименты по выращиванию кристаллов, выполненные на станции «Салют-5», а также во время совместного полета кораблей «Союз» и «Аполлон».

На станции «Салют-5» исследовались особенности роста кристаллов из водных растворов. Главной отличительной чертой подобных экспериментов в космосе является отсутствие конвекции в жидкости, которая приводит к колебаниям скорости роста и состава кристалла. С этой точки зрения качество кристаллов, получаемых в космосе, должно быть более высоким. Но с другой стороны, в космических условиях на пузырьки газа в жидкости не действует сила Архимеда, и эти пузырьки могут захватываться растущими гранями кристалла.

Исследование этих процессов на станции «Салют-5» проводилось с помощью прибора «Кристалл». Он представлял собой термостат с тремя кристаллизаторами, в каждом из которых происходило выращивание кристаллов алюмокалиевых квасцов из их водного раствора (см. рис. 6). Алюмокалиевые квасцы были выбраны в качестве исследуемого материала, поскольку их свойства и особенности роста на Земле хорошо изучены. Для того чтобы вызвать процесс кристаллизации, в каждый из растворов вводился кусочек кристалла («затравка»). На его гранях и начинался рост кристалла, материал которого вследствие диффузии поступал из раствора. На рис. 11 показаны образцы кристаллов алюмокалиевых квасцов, выращенных на орбитальной станции «Салют-5».

Эксперимент с кристаллизатором № 1 продолжался в течение 24 суток (с 14 июля по 8 августа 1976 г.). Первая экспедиция на станцию «Салют-5» — космонавты Б. В. Волынов и В. М. Жолобов — доставила на Землю кристаллы из этого кристаллизатора, которые выросли не только на «затравке», но и в объеме кристаллизатора (массовая, или объемная, кристаллизация). Эксперимент с кристаллизатором № 2 продолжался 185 суток (с 9 августа 1976 г. по 11 февраля 1977 г.). Большая часть этого эксперимента происходила в то время, когда станция «Салют-5» находилась в беспилотном управляемом режиме. Вторая экспедиция — космонавты В. В. Горбатко и Ю. Н. Глазков — доставила на Землю большое количество кристаллов, полученных при массовой кристаллизации. Было отмечено интересное явление — срастание отдельных кристаллов в цепочки («ожерелья»). Опыт в кристаллизаторе № 3 проводился 11 суток. На Землю был доставлен кристалл, выросший на «затравке», массовая кристаллизация в этом кристаллизаторе отсутствовала (см. рис. 11).

Изучение кристаллов, выросших в кристаллизаторе № 1, показало, что «космические» кристаллы отличаются от выращенных на Земле как по внешней огранке кристаллов (хорошо развиты те грани кристалла, которые обычно слабо развиты в земных образцах), так и во внутренней структуре (космические образцы содержат повышенное количество газово-жидких включений). Исследование кристаллов, полученных при массовой кристаллизации в кристаллизаторе № 2, показало, что и они содержат газово-жидкие включения. Наблюдаются сростки из четырех — пяти отдельных кристалликов. Для кристалла, выросшего в кристаллизаторе № 3, характерно чередование зон, содержащих газовые включения с зонами, чистыми от включений.

Перейти на страницу:

Все книги серии Новое в жизни, науке, технике. Серия «Космонавтика, астрономия»

Похожие книги

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература
Что? Где? Когда?
Что? Где? Когда?

Книга известных игроков телевизионных клубов «Что? Где? Когда?» и «Брэйн ринг», членов Международной ассоциации клубов «Что? Где? Когда?» популяризирует интеллектуальные игры как эффективный способ занятия досуга и развития творческих способностей людей всех возрастов.Авторы раскрывают секреты составления вопросов, знакомят с методикой тренировки интеллектуальных способностей, делятся богатым опытом проведения турниров команд «Что? Где? Когда?» и «Брэйн ринг».В сборнике приведены вопросные материалы турниров, организованных московскими клубами «Что? Где? Когда?» в сезоны 1997-1999 гг.

Владимир Григорьевич Белкин , Евгений Венедиктович Алексеев , Ирина Константиновна Тюрикова , Максим Оскарович Поташев , Наиля Адилевна Курмашева

Научная литература / Прочая научная литература / Образование и наука