Читаем Космические двигатели будущего полностью

Схема двигателя с использованием термоядерных микровзрывов приведена на рис. 7, б. Принципиальное отличие таких двигателей от двигателей на трансурановых элементах состоит в наличии системы инициирования термоядерной реакции и источника электрической энергии для ее питания. Система инициирования представляет собой либо набор источников светового излучения, либо ускорителей заряженных частиц, расположенных таким образом, чтобы по возможности симметрично облучать мишень. В качестве источника излучения может использоваться один мощный лазер с разделением его луча на несколько или комбинацию лазеров.

Мишень выстреливается в пространство над отражателем, и в тот момент, когда она проходит точку фокусировки лучей, создается поджигающий импульс. Термоядерная плазма отражается от магнитного поля, создаваемого сверхпроводящими соленоидами, и выбрасывается во внешнее пространство, создавая реактивную тягу. Для выработки электроэнергии могут использоваться либо специальные соленоиды, либо те же соленоиды, которые являются источниками защитного магнитного поля. При взаимодействии движущейся плазмы с магнитным полем в соленоидах находится ЭДС, и вырабатываемая электроэнергия идет на генерацию последующего импульса.

В американском проекте термоядерного двигателя с лазерным поджигом реакции предполагается использовать лазер с энергией в импульсе 1 МДж, длительностью импульса 10 нс и частотой следования импульсов 500 Гц. Масса лазера оценивается в 150 т. При энергии, выделяемой в одном микровзрыве, 108 Дж такой двигатель, по расчетам авторов проекта, может разогнать полезный груз массой 100 т до характеристической скорости 10 км/с за одни сутки. Для этого потребуется около 108 микровзрывов.

Английские исследователи в проекте двигателя на термоядерных микровзрывах предлагают осуществлять инициирование термоядерной реакции с помощью электронных ускорителей. Частота следования «поджигающих» импульсов составляет 100 Гц, энергия в каждом микровзрыве 1011 Дж. В двигателе для разгона полезного груза 100 т до скорости 0,15 скорости света сжигается несколько сотен тонн термоядерного горючего в течение года.

Основной трудностью при создании импульсных термоядерных двигателей является разработка системы инициирования реакции. Именно отсутствие соответствующих лазерных и ускорительных устройств определенным образом сказывается на том, что до сих пор не осуществлена управляемая термоядерная реакция. Масса инициирующей системы пропорциональна энергии микровзрыва, поэтому желательно иметь как можно меньшее энерговыделение в каждом взрыве. Но тогда при заданной тяге должна быть обеспечена высокая частота повторения импульсов, а для достижения заданной характеристической скорости — соответственно большее их количество. Допустимое же число импульсов ограничено ресурсом системы.

В связи с этим советские ученые Е. П. Велихов и В. В. Чернуха предложили способ каскадного поджига термоядерных мишеней. Суть способа состоит в том, что через время около 10–6 с после поджига первой мишени в область взрыва подается более массивная мишень, на инициирование реакции в которой используется часть энергии первого взрыва. Потом подается мишень еще большей массы и т. д. Используя в каждом каскаде мишени с десятикратным увеличением выделения энергии, можно получить энергию взрыва 1010 — 1011 Дж для системы инициирования с энерговыделением 108 Дж.

При этом соответственно уменьшается частота повторения импульсов, но в то же время, конечно, увеличивается импульсная нагрузка на отражатель. В каскадной схеме появляется возможность использовать в последующих ступенях каскада более трудновоспламеняемое горючее (например, чистый дейтерий). Это резко сокращает потребность в тритии и одновременно уменьшает выход нейтронов.

Другой не менее важной задачей разработки импульсных термоядерных двигателей является отвод тепла, выделяющегося в конструкции. Как указывалось раньше, в дейтерий-тритиевой реакции до 80 % энергии уносится нейтронами, которые не задерживаются магнитным полем отражателя. Кардинальным решением проблемы было бы использование смеси обычного водорода с изотопом бор-11 в качестве термоядерного горючего. Хотя энерговыделение при сгорании этого горючего меньше, чем для дейтерий-тритиевой смеси, но зато полностью отсутствуют нейтроны. Однако эта реакция требует для своего инициирования более высокой температуры, и освоение ее является делом отдаленного будущего.

Перейти на страницу:

Все книги серии Новое в жизни, науке, технике. Серия «Космонавтика, астрономия»

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука
Кто бы мог подумать! Как мозг заставляет нас делать глупости
Кто бы мог подумать! Как мозг заставляет нас делать глупости

Книга молодого научного журналиста Аси Казанцевой — об «основных биологических ловушках, которые мешают нам жить счастливо и вести себя хорошо». Опираясь по большей части на авторитетные научные труды и лишь иногда — на личный опыт, автор увлекательно и доступно рассказывает, откуда берутся вредные привычки, почему в ноябре так трудно работать и какие вещества лежат в основе «химии любви».Выпускница биофака СПбГУ Ася Казанцева — ревностный популяризатор большой науки. Она была одним из создателей программы «Прогресс» на Пятом канале и участником проекта «Наука 2.0» на телеканале Россия; ее статьи и колонки публиковались в самых разных изданиях — от «Троицкого варианта» до Men's Health. «Как мозг заставляет нас делать глупости» — ее первая книга.

Анастасия Андреевна Казанцева , Ася Казанцева

Научная литература / Биология / Биохимия / Психология / Образование и наука