Читаем Космические двигатели будущего полностью

Первое ограничение, которое сразу бросается в глаза, — ограниченная мощность источника. Если общая мощность излучения Солнца на много порядков превышает мощность, необходимую для питания двигательной установки, и не ограничивает ее возможностей, то энергетические характеристики двигательной системы с искусственным источником ограничены мощностью источника и следует стремиться к тому, чтобы как можно большая доля мощности внешнего источника достигала двигателя. Отсюда следует необходимость в высокой эффективности передачи энергии в тракте источник — космический аппарат. В идеале требуется, чтобы вся энергия источника поступала в приемное устройство космического аппарата. Реально это должна быть доля, составляющая по меньшей мере десятки процентов от мощности источника.

Эффективную передачу электромагнитного излучения можно реализовать, сформировав излучение в узкий пучок. Возможность формирования пучка необходимой конфигурации, распространения и приема направленного электромагнитного излучения определяется длиной волны (частотой), размерами излучающей или приемной поверхности, параметрами среды, в которой происходит распространение.

Прием и передача электромагнитных волн. Прием и передача электромагнитных волн производится антеннами. Приемная и передающая антенны имеют много общего, и часто одно и то же устройство используется в качестве и передающей и приемной антенны. Пока речь шла об обычных антеннах, в задачу которых входит либо передача, либо прием и сбор падающей электромагнитной энергии. Однако уже сейчас существуют антенны, принимающие электромагнитную энергию и преобразующие ее в электрическую, — это и солнечные батареи, и устройства, называемые ректеннами, которые предназначены для приема монохроматического излучения в диапазоне сверхвысоких частот (СВЧ-диапазоне) и преобразования его в постоянный электрический ток.

Поэтому в более широком смысле под приемной антенной будем понимать устройство, предназначенное для приема и преобразования энергии электромагнитного излучения в некоторый другой вид энергии. Все такие устройства объединяет ряд общих моментов, в значительной степени влияющих на облик антенны. Прежде всего это касается соотношений между размерами антенны, длинами излучаемых или принимаемых электромагнитных волн, направленностью излучения для передающих антенн или способностью эффективно принимать электромагнитные волны для приемных антенн.

Степень направленности излучения с длиной волны λ, которую можно реализовать с помощью антенны размера D, характеризуется специальной величиной — углом расходимости Θ ~ λ/D. При передаче электромагнитной энергии с высоким коэффициентом направленного действия (с малыми потерями) расходящийся пучок почти целиком попадает на поверхность приемной антенны. Если расстояние между передающей и приемной антеннами велико, требуемый угол расходимости излучения оказывается чрезвычайно малым. Следовательно, размеры антенн, измеренные в единицах длин волн, должны быть значительными.

Например, при использовании электромагнитного излучения с длиной волны 1 см для передачи электромагнитной энергии без значительных потерь на расстояния порядка 1000 км нужны антенны размером 100 м. С точки зрения эффективности передачи выгоднее использовать более короткие длины волн, поскольку расстояние эффективной передачи обратно пропорционально длине волны. Однако уменьшение длины волны, способствуя решению одной проблемы (проблемы расстояния), создает другие. В частности, ужесточаются требования на точность изготовления конструкции, точность наведения, стабилизацию антенн по направлению приема и передачи и т. д. Как всегда в таких случаях, нужен эффективный компромисс между требованиями, налагаемыми решаемой задачей, и технико-экономическими возможностями.

Классификация двигателей с внешними источниками электромагнитного излучения. Гипотетические тяговые системы с внешними источниками электромагнитного излучения весьма разнообразны. Они используют естественные и искусственные источники излучения, а возможный диапазон применяемых длин волн простирается от рентгеновского до СВЧ. Кроме того, в них используются различные способы преобразования энергии излучения в тягу. То обстоятельство, что источник энергии для создания тяги находится вне космического аппарата, существенным образом сказывается на внешнем виде двигательной системы и всего космического аппарата. Непременным атрибутом становится приемная антенна значительных размеров.

Перейти на страницу:

Все книги серии Новое в жизни, науке, технике. Серия «Космонавтика, астрономия»

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука
Кто бы мог подумать! Как мозг заставляет нас делать глупости
Кто бы мог подумать! Как мозг заставляет нас делать глупости

Книга молодого научного журналиста Аси Казанцевой — об «основных биологических ловушках, которые мешают нам жить счастливо и вести себя хорошо». Опираясь по большей части на авторитетные научные труды и лишь иногда — на личный опыт, автор увлекательно и доступно рассказывает, откуда берутся вредные привычки, почему в ноябре так трудно работать и какие вещества лежат в основе «химии любви».Выпускница биофака СПбГУ Ася Казанцева — ревностный популяризатор большой науки. Она была одним из создателей программы «Прогресс» на Пятом канале и участником проекта «Наука 2.0» на телеканале Россия; ее статьи и колонки публиковались в самых разных изданиях — от «Троицкого варианта» до Men's Health. «Как мозг заставляет нас делать глупости» — ее первая книга.

Анастасия Андреевна Казанцева , Ася Казанцева

Научная литература / Биология / Биохимия / Психология / Образование и наука