Читаем Космические двигатели будущего полностью

Еще один метод создания тяги, использующий поглощение лазерного излучения пригоден для разгона космического аппарата на атмосферном участке траектории. Он был предложен группой исследователей из ФИАНа под руководством А. М. Прохорова в 1973 г. В этом варианте излучение без существенного поглощения проходит через атмосферу и попадает на параболическую отражающую поверхность, которая находится в хвостовой части летательного аппарата и жестко с ним связана. Интенсивность излучения в фокальной области этой поверхности должна превышать порог, при котором происходит электрический пробой находящегося там воздуха. Тяга возникает без использования какого-либо другого топлива, кроме атмосферного воздуха. Если между импульсами лазера обеспечивается смена воздуха, то двигатель работает как лазерный пульсирующий воздушно-реактивный двигатель.


Рис. 11. Лазерный пульсирующий ВРД: 1 — параболическая оболочка с полированной внутренней поверхностью, 2 — фокус параболоида, 3 — пробой воздуха, 4 — светодетонационная волна, 5 — лазерный луч


Схематическое представление о лазерном пульсирующем воздушно-реактивном двигателе дает рис. 11. Лазерный луч, падающий на полированную внутреннюю поверхность, фокусируется с образованием потока высокой интенсивности. Следующий за этим пробой воздуха возбуждает ударную волну, которая распространяется по направлению к выходному срезу сопла. Причем все высокое давление газа за ней преобразуется в силу, действующую на стенки сопла, т. е. тягу.

Лазерный МГД-двигатель. В рамках работ по анализу перспективных двигателей для одноступенчатого транспортного корабля в США проведены исследования по созданию МГД-двигателя с использованием лазера. Основное преимущество такого двигателя, по сравнению с лазерным воздушно-реактивным двигателем, заключается в том, что за счет ускорения рабочего тела с помощью электродинамических сил предоставляется возможность получения высоких скоростей истечения реактивной струи. В качестве рабочего тела используется плазма, получаемая из атмосферного воздуха; источник энергии — лазерные генераторы орбитальных или наземных станций, вдоль которых движется транспортный-космический корабль.

МГД-двигатель транспортного космического корабля с площадью поперечного сечения, равного площади поперечного сечения ракеты-носителя «Сатурн-5», имеет впереди приемник лазерного излучения, за ним кольцевой воздухозаборник. Из воздухозаборника воздух попадает в ионизационную камеру, где под воздействием лазерного излучения ионизуется и превращается в плотную плазму. Основная часть лазерного излучения не поглощается в образовавшейся плазме, а отражается на стенки, вдоль которых размещены преобразователи лазерного излучения в электрический ток. Вырабатываемая электроэнергия используется для создания тяги, подобно тому, как это делается в торцевых плазменных двигателях: плазма ускоряется силой, возникающей в результате взаимодействия электрического тока с собственным магнитным полем. Струя плазмы, вылетающая из двигателя, создает реактивную тягу.

Анализ рабочих параметров проводился применительно к величине орбитальной массы транспортного космического корабля 22 т: ток 360 кА — на уровне Земли, 600 кА (максимум) — при максимальной тяге для скорости полета 500 м/с и при орбитальной скорости 280 м/с, скорость истечения реактивной струи заряженных частиц несколько сотен метров в секунду у Земли и 460 км/с на орбите. Мощность лазерного излучения быстро возрастает до 1,35 ГВт при разгоне космического корабля до достижения скорости полета 750 м/с, а со скорости полета порядка 1,5 км/с линейно растет до 3,75 ГВт на скорости орбитального полета.

Электромагнитный резонаторный двигатель. В отличие от ранее рассмотренных схем двигателей, в этом двигателе отсутствует рабочее тело, вернее, в его роли выступает электромагнитное излучение. Мы рассматривали уже возможность использования давления электромагнитного излучения для создания тяги в системах типа солнечный парус и выяснили, что при использовании даже такого практически неограниченного источника электромагнитной энергии, каким является Солнце, возможное значение тяги составляет несколько килограммсил.

Можно ли рассчитывать на получение заметной тяги за счет давления электромагнитного излучения при использовании искусственного источника излучения (например, лазера или мощного генератора электромагнитных волн СВЧ-диапазона)?

Перейти на страницу:

Все книги серии Новое в жизни, науке, технике. Серия «Космонавтика, астрономия»

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука
Кто бы мог подумать! Как мозг заставляет нас делать глупости
Кто бы мог подумать! Как мозг заставляет нас делать глупости

Книга молодого научного журналиста Аси Казанцевой — об «основных биологических ловушках, которые мешают нам жить счастливо и вести себя хорошо». Опираясь по большей части на авторитетные научные труды и лишь иногда — на личный опыт, автор увлекательно и доступно рассказывает, откуда берутся вредные привычки, почему в ноябре так трудно работать и какие вещества лежат в основе «химии любви».Выпускница биофака СПбГУ Ася Казанцева — ревностный популяризатор большой науки. Она была одним из создателей программы «Прогресс» на Пятом канале и участником проекта «Наука 2.0» на телеканале Россия; ее статьи и колонки публиковались в самых разных изданиях — от «Троицкого варианта» до Men's Health. «Как мозг заставляет нас делать глупости» — ее первая книга.

Анастасия Андреевна Казанцева , Ася Казанцева

Научная литература / Биология / Биохимия / Психология / Образование и наука