Читаем Космические рубежи теории относительности полностью

Во-вторых, выяснилось, что уравнение электромагнитной волны не накладывает никаких ограничений или условий на длину волны описываемого им излучения. Но из опыта физикам было известно, что обычный видимый свет соответствует очень узкому диапазону длин волн. Таким образом, волновое уравнение предсказывало существование совершенно неизвестных видов электромагнитного излучения, длины волн которых на много порядков величины больше или меньше, чем у видимого света. На протяжении десятилетий после этого теоретического предсказания было открыто много новых видов электромагнитного излучения. которые стали для нас привычными. Например, ультрафиолетовое и рентгеновское излучения имеют длины волн короче, чем у видимого света, а инфракрасное и радиоизлучение являются более длинноволновыми. Все эти виды излучения, включая и видимый свет, образуют электромагнитный спектр (рис. 2.5).

РИС. 2.5. Электромагнитный спектр. Электромагнитное излучение охватывает весь диапазон от чрезвычайно коротковолновых гамма-лучей до очень длинных радиоволн. Обратите внимание на то, что видимый свет занимает лишь малую долю спектра.

Наконец, одно из самых непонятных свойств электромагнитного волнового уравнения состояло в том, что при выводе его из уравнений поля Максвелла некоторые коэффициенты объединились и дали число, согласно экспериментам равное 300000 км/с. Другими словами, с волновым уравнением неразрывно связана скорость, которую обычно обозначают латинской буквой с и отождествляют со скоростью света. Трудно переоценить значение этого исключительного факта. Впервые в истории науки при описании явлений природы на самом фундаментальном уровне появилась скорость. Появление в теории величины с повлияло почти на все понятия и представления о Вселенной, включая интуитивные представления о пространстве, времени и материи.

На первый взгляд присутствие с в волновом уравнении говорит о том, что всякое электромагнитное излучение должно распространяться со скоростью 300 000 км/с. Но после минутного размышления мы понимаем, что пора спросить: «Как?» и «Относительно чего?» Звуковые волны распространяются в воздухе, океанские волны - в воде, а в какой среде распространяются электромагнитные волны? Чтобы ответить на этот вопрос, физики XIX в. постулировали существование всепроникающей среды - эфира. Этот загадочный эфир не взаимодействовал ни с чем в материальном мире, и вся его роль сводилась к роли переносчика электромагнитных волн. Логично было заключить, что с -это скорость света относительно загадочного эфира.

В 1880-х годах появилась идея: а нельзя ли измерить скорость движения Земли относительно гипотетического эфира? Ведь эфир должен заполнять всю Вселенную - иначе как мог бы доходить до нас свет от звёзд? К тому же Земля обращается вокруг Солнца, так что каждые 6 месяцев она, очевидно, должна менять направление движения относительно эфирного океана на противоположное.

РИС. 2.6. Опыт Майкельсона-Морли. (Схема интерферометра). Такая экспериментальная установка использовалась Майкельсоном и Морли в их безуспешной попытке обнаружить движение Земли относительно эфира. Отрицательный результат опыта показал, что в классической физике что-то неладно.

Два американских физика, Альберт А. Майкельсон и Эдвард У. Морли, поставили конкретный опыт, с помощью которого можно было бы измерить скорость движения Земли относительно эфира. Схема прибора, который называется интерферометром Майкельсона, показана на рис. 2.6. Источник света испускает луч по направлению к центру прибора, где расположен делитель пучка света, позволяющий половине пучка света пройти Дальше и попасть на зеркало А, тогда как другая половина отражается под прямым углом на зеркало В. Оптические расстояния между делителем луча и обоими зеркалами должны быть с высокой точностью одинаковыми. После того как свет отразится от зеркал А и В, два получившихся луча возвращаются к центру прибора. Часть луча от зеркала В проходит через делитель и смешивается с частью луча от зеркала А, и свет направляется в небольшой телескоп. Из классической оптики хорошо известно, что когда два луча вместе приходят к конечной точке своего путешествия, они интерферируют друг с другом, образуя систему интерференционных полос. Эту интерференционную картину легко наблюдать с помощью небольшого телескопа.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука