Читаем Космические рубежи теории относительности полностью

В 1960-х годах астрономы открыли на небе объекты, названные квазарами. На первый взгляд квазары выглядят как обычные звёзды, но при более тесном знакомстве у них обнаруживаются многие свойства, обычно присущие лишь далеким галактикам. Хотя мы до сих пор не разгадали природу квазаров, мы уже знаем, что они излучают огромное количество радиоволн.

РИС. 5.8. Квазар 3C273.Квазары - мощные источники космических радиоволн. Измеряя отклонение радиоволн, приходящих к нам от квазара ЗС 273, под действием тяготения Солнца, астрономы получили новое подтверждение правильности общей теории относительности. (Обсерватория им. Хейла.)

Факт чрезвычайной «яркости» квазаров в радиодиапазоне подсказал радиоастрономам идею важного эксперимента. Ежегодно 8 октября Солнце в своем видимом движении по небу проходит мимо квазара ЗС 273 (рис. 5.8). Когда Солнце приближается к тому месту на небосводе в созвездии Девы, где находится квазар ЗС 273, радиоволны, идущие от квазара, должны отклоняться точно таким же образом, как обычный свет от звёзд. Так как Солнце в радиодиапазоне «светит» сравнительно слабо, то радиоастрономам не нужно дожидаться солнечного затмения в каком-нибудь заброшенном уголке Земли - наблюдения можно проводить на радиоастрономической обсерватории со всеми удобствами.

В начале 1970-х годов радиоастрономы провели ряд наблюдений отклонения радиоволн Солнцем. В октябре 1972 г. измерялись угловые расстояния между квазарами ЗС 273 и ЗС 279. Когда Солнце сближалось на небосводе с квазаром 3C273, угловое расстояние на небе между этими двумя квазарами слегка изменялось вследствие отклонения радиоволн, идущих от квазара ЗС 273. Результаты наблюдений с чрезвычайно высокой степенью точности соответствовали общей теории относительности Эйнштейна.

Лучше всего разобраться в том, как геометрия пространства-времени влияет на поведение световых лучей и частиц, можно с помощью так называемых диаграмм вложения. Как упоминалось в предыдущих главах, наглядно представить себе искривлённое 4-мерное пространство-время невозможно. Чтобы обойти эту трудность, физики-теоретики иногда предпочитают представить себе явления в двух измерениях, а затем обобщить результаты на случай четырёх измерений. Бывает и так, что они для лучшего понимания следствий из своих уравнений «выключают» два измерения из четырёх и рассматривают получившуюся двумерную искривлённую поверхность. Образно говоря, суть дела сводится к сечению искривлённого пространства-времени и исследованию вида получающейся поверхности. Это можно сравнить с тем, как вы стали бы разрезать торт, чтобы увидеть последовательность слоёв теста и крема и расположения глазури. Срез через пространство-время называется гиперповерхностью, а если срез делается перпендикулярно оси времени, то гиперповерхность называется пространственноподобной. Изображать такие пространственноподобные гиперповерхности - значит строить диаграммы вложения.

Для лучшего понимания диаграмм вложения рассмотрим плоское пространство-время - его можно найти где-нибудь вдали от всех источников тяготения. Срез через плоское пространство-время даёт нам плоскую двумерную гиперповерхность. Эта поверхность является плоской в том же самом смысле, в каком мы говорим о плоском поле или плоской поверхности стола. Изображение такой поверхности (см. рис. 5.9) и есть, по существу, диаграмма вложения.

РИС. 5.9. Плоское пространство. Диаграмма вложения для плоского пространства-времени выглядит просто как обычная плоскость. Положение точек на такой пространственноподобной гиперповерхности может быть охарактеризовано как прямоугольными (справа), так и полярными (слева) координатами.

Обратимся теперь к искривлённому пространству-времени вокруг Солнца. Солнце не изменялось на протяжении миллиардов лет, так что не изменялась и геометрия пространства-времени вокруг него. И пространственноподобная гиперповерхность будет выглядеть через миллиард лет так же, какой она была миллиард лет назад. Однако если такое пространство-время рассечь, то получившаяся гиперповерхность уже не будет плоской ввиду искривляющего воздействия гравитационного поля Солнца. На рис. 5.10 приведена диаграмма вложения, изображающая это искривление. Штриховкой помечена область, где находится Солнце. Диаграмма вложения в сущности показывает, как действовала бы гравитация, если бы мы жили не в четырёхмерном пространстве-времени, а в двумерном пространстве. Она поясняет, как тяготение влияет на кривизну пространства.

С помощью диаграммы вложения можно наглядно представить себе эффект отклонения света звёзд (или радиоволн от квазаров). Поскольку гиперповерхность на рис. 5.10 не плоская, световые лучи, распространяющиеся по этой искривлённой поверхности, не будут прямолинейными. Как видно на рис. 5.11, геодезические, по которым следуют световые лучи звёзд, искривлены, и потому кажется, что звёзды сдвинуты со своих обычных мест.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука