Читаем Космические рубежи теории относительности полностью

Чтобы лучше понять проблему, мучившую астрономов сто лет назад, рассмотрим какую-либо определённую точку на орбите Меркурия, скажем, точку, в которой Меркурий оказывается ближе всего к Солнцу. Её называют перигелием; если смотреть с Земли, она занимает определённое положение на небе. Так как орбита Меркурия очень медленно поворачивается, то почти эллиптическая траектория планеты вокруг Солнца постепенно меняет свою ориентацию. В результате очень медленно смещается и положение перигелия Меркурия. Этот эффект так мал, что за целых сто лет перигелий Меркурия поворачивается лишь на 1°33'20", как показано на рис. 5.3. Из этого наблюдаемого полного поворота теория Ньютона может объяснить только поворот на 1°32'37" за столетие. Остаётся избыточное движение перигелия, равное 43 секундам дуги за столетие, которое нельзя отнести за счет эффектов классической ньютоновской теории. Хотя такое расхождение весьма мало, к началу XX в. стало ясно, что классическая механика не может полностью объяснить особенности движения ближайшей к Солнцу планеты.

В 1916 г. Эйнштейн предложил принципиально новую теорию тяготения, названную общей теорией относительности. Согласно этой новой теории, гравитационное поле объекта проявляется как искривление пространства-времени. Чем сильнее гравитационное поле, тем больше кривизна пространства-времени. Частицы и световые лучи распространяются по кратчайшим мировым линиям в таком искривлённом пространстве-времени - по геодезическим.

Разрабатывая новую теорию тяготения, Эйнштейн отчетливо понимал, что какие бы идеи он ни клал в её основу, эта теория должна переходить в теорию тяготения Ньютона в предельном случае слабого поля. Ведь законы Ньютона очень хорошо подтверждаются наблюдениями. С помощью старой теории тяготения оказалось возможным с высокой точностью рассчитывать орбиты комет и астероидов и предсказывать существование ещё не открытых планет. И в наше время при расчётах траекторий полётов космонавтов на Луну опирались только на обычную ньютонову теорию тяготения (рис. 5.4), так как гравитационные поля Земли и Луны очень слабы. На языке общей теории относительности пространство-время вблизи Земли или Луны почти плоское. Это обстоятельство уже отмечалось, когда мы рассматривали в предыдущей главе игру в теннис. Мы видели, что мировые линии теннисного мяча в пространстве-времени представляют собой на самом деле малые дуги окружностей очень больших диаметров. Дуга окружности диаметром в 2 световых года, если её длина равна 100 м, - это почти прямая линия. Конечно, теория Ньютона вполне достаточна для описания траекторий теннисного мяча при игре. Иными словами, поскольку ньютонова теория вполне успешно работает в условиях слабых гравитационных полей, Эйнштейн заключил, что уравнения поля тяготения в общей теории относительности должны переходить в уравнения, описывающие закон тяготения Ньютона, когда пространство-время почти совершенно плоское.

Рис. 5.4. Картина, наблюдаемая с «Аполлона-8». Старомодной теории Ньютона с избытком хватает для расчёта орбит, по которым космонавты достигают Луны и возвращаются на Землю. Эффекты общей теории относительности оказываются слишком малыми, чтобы их можно было заметить. (НАСА.)

После того как Эйнштейну удалось найти уравнения гравитационного поля в общей теории относительности, он, естественно, решил применить свою новую теорию в конкретных задачах. Прежде всего приходит в голову использовать движение планет вокруг Солнца. Согласно теории Ньютона, орбита отдельно взятой планеты - это эллипс, в одном из фокусов которого находится Солнце. Что же говорит об этом общая теория относительности?

Эйнштейн начал с уравнений гравитационного поля в пустом пространстве. Решив эти уравнения, он узнал, как искривлено пространство-время около Солнца. Зная геометрию пространства-времени, Эйнштейн перешел к решению уравнений геодезической: он хотел узнать, как движутся планеты в таком искривлённом пространстве-времени. И получился не эллипс! В общей теории относительности орбита отдельно взятой планеты около Солнца является не просто эллипсом, а медленно поворачивающимся эллипсом. Такая орбита должна сама поворачиваться, даже без каких-либо возмущений от других планет. Поворачивающийся эллипс - это просто самая короткая мировая линия в искривлённом пространстве-времени вблизи Солнца.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука