Читаем Космические рубежи теории относительности полностью

Рассмотренная нами игра в теннис иллюстрирует и ещё один важный момент. Десятиметровая дуга окружности диаметром в два световых года - это почти прямая линия. Другими словами, геодезические для предметов, движущихся в гравитационном поле Земли, практически неотличимы от обычных прямых в пространстве-времени. Это означает в свою очередь, что пространство-время около Земли почти идеально плоское. С точки зрения общей теории относительности гравитационное поле Земли следует поэтому считать очень слабым. Поэтому на Земле очень трудно произвести эксперименты (равно как и вообще в Солнечной системе), которые помогли бы обнаружить это очень малое искривление пространства-времени. Проверка правильности общей теории относительности - это очень трудная задача, стоящая перед физиками и астрономами.

5

ЭКСПЕРИМЕНТЫ В ОБЩЕЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ

Труды Исаака Ньютона в течение двухсот лет сохраняли свою роль краеугольного камня неколебимых основ классической механики. Практически всё удавалось объяснить представлением о тяготении как о силе. Благодаря тяготению вы могли сидеть на стуле. Тяготение удерживало Луну на её орбите около Земли. Та же сила тяготения поддерживала целостность Солнечной системы и определяла взаимодействие между звёздами и галактиками.

Успехи ньютоновской механики неизменно умножались на протяжении сотен лет. В 1705 г. Эдмунд Галлей опубликовал свои расчёты орбит 24 комет. Он обнаружил, что орбиты ярких комет, наблюдавшихся в 1531, 1607 и 1682 гг., были настолько близки друг к другу, что это могла быть на самом деле одна и та же сильно вытянутая эллиптическая орбита с фокусом в Солнце. Развивая труды Галлея, Алексис Клеро предсказал возвращение этой кометы в 1758 г. И действительно, её увидели тогда в ночь на Рождество; эта комета получила название кометы Галлея (рис. 5.1). Воспользовавшись законами Ньютона, карандашом и бумагой, астрономы открыли нового постоянного члена Солнечной системы.

РИС.5.1. Комета Галлея. На основе ньютоновской механики астрономы в XVIII в. обнаружили, что эта комета является постоянным членом Солнечной системы. Период обращения кометы Галлея вокруг Солнца составляет около 76 лет, и она должна снова вернуться к Солнцу в 1986 г. (Ликская обсерватория.)

С начала XIX в. астрономы стали открывать малые планеты -астероиды,обращающиеся вокруг Солнца между орбитами Марса и Юпитера. 1 января 1801 г. сицилийский астроном Джузеппе Пиацци обнаружил Цереру; в марте 1802 г. Генрих Ольберс нашёл второй астероид, Палладу. Затем последовали открытия Юноны в 1804 г. и Весты - в 1807 г. В каждом случае орбиты астероидов в точности соответствовали теории Ньютона

В 1840-х годах Джон Коуч Адамс в Англии и Урбен Жан Жозеф Леверье во Франции независимо друг от друга пришли к заключению, что наблюдаемые отклонения в движении Урана могут быть объяснены существованием в Солнечной системе восьмой планеты. Как было рассказано в предыдущей главе, их вычисления привели к открытию Нептуна. Это был новый триумф ньютоновской механики.

РИС. 5.2. Меркурий. К середине XIX в. астрономы убедились, что Меркурий не движется точно по той орбите, которая предсказывается ньютоновской теорией. Хотя эти аномалии движения почти незаметны, движение Меркурия не поддаётся объяснению в рамках классической физики. (НАСА.)

Однако, несмотря на множество успехов, у ньютоновского закона тяготения было одно слабое место. Начиная с 1859 г. Леверье отметил, что Меркурий (рис. 5.2) не следует в точности по предвычисленной орбите. Как говорилось в предыдущей главе, все попытки объяснить аномалии в проведении Меркурия в рамках механики Ньютона оказались неудачными.

Следует подчеркнуть, что отклонения движения Меркурия от теории весьма незначительны. Согласно классической теории (т.е. теории Ньютона, Кеплера и т.п.), орбита одной отдельно взятой планеты должна быть идеальным эллипсом с Солнцем в одном из фокусов. Однако в Солнечной системе помимо Меркурия есть и другие планеты. Эти планеты тоже притягивают Меркурий, хотя и слабо, что приводит к незначительным отклонениям его орбиты от идеального эллипса. Это отклонение называется возмущением орбиты Меркурия. Пользуясь законом тяготения Ньютона, астрономы могли рассчитать точную величину этих возмущений. И уже на протяжении многих лет знали, что орбита Меркурия должна медленно поворачиваться под действием возмущений со стороны всех других планет. Однако наблюдаемая скорость поворота орбиты оказалась заметно больше, чем предсказывала теория Ньютона.

РИС. 5.3. Движение перигелия Меркурия. Положение перигелия орбиты Меркурия смещается за столетие вперёд по ходу его движения на 1°33'20". Большая часть этого смещения (1°32'37") поддаётся объяснению как результат возмущений со стороны других планет.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука