Чтобы понять, как делается такое обобщение, рассмотрим в пространстве-времени мировую линию наблюдателя, претерпевающего кратковременное ускорение. Такая линия изображена на рис. 4.17. Мы без труда нарисуем сетку пространственно-временных координат нашего наблюдателя и после короткого периода ускорения. Если наблюдатель сначала покоится на диаграмме пространства-времени, то эта сетка будет совпадать с нашей собственной. Однако после периода ускорения наблюдатель движется по отношению к нам с некоторой скоростью. Согласно преобразованию Лоренца, обсужденному в предыдущей главе, пространственно-временная сетка движущегося наблюдателя будет казаться нам слегка скошенной, как это показано на рис. 4.17. Но там, где две сетки перекрываются, их согласовать будет невозможно.
РИС. 4.17.
Поскольку гравитацию можно рассматривать как эквивалент ускорения в удалённой от всех тел области космоса, мировую линию тела, падающего в поле тяготения, можно представить как бесконечно большое число очень слабо ускоренных движений, непрерывно следующих друг за другом. До и после каждого из таких периодов бесконечно малых ускорений можно строить пространственно-временные сетки. В результате окажется, что перед нами - бесконечное число областей с перекрытиями по всей диаграмме пространства-времени.
Причины этой трудности в том, что частная теория относительности
ограничивается плоским пространством-временем. Области с перекрытиями
возникают именно вследствие чересчур строгого применения понятия
«плоское пространство-время в каждой точке и в каждый момент
времени». Однако, если допустить, что пространство-время
Но что такое искривлённое пространство-время? Чтобы ответить на этот вопрос, нужно сначала чётко выяснить смысл терминов «плоский» и «искривлённый». Для удобства, как это часто используется в теории относительности, ограничимся анализом двумерного случая. Если мы проведем анализ правильно, то его результаты можно будет распространить на все три измерения. Иными словами, если нам станет ясно, что понимается под утверждениями: «пол в комнате плоский», «поверхность баскетбольного мяча искривлена», то это послужит ключом к пониманию искривлённого пространства-времени.
Представьте себе плоскую поверхность типа изображенной на рис.
4.18. Пусть из какой-то одной её точки разбегается множество
муравьев. Если каждый из них проползет
РИС. 4.18.
РИС. 4.19.
Пусть теперь муравьи сделают то же самое на поверхности, не
являющейся плоской (рис. 4.19). Как и прежде, каждый из них проползет
от общей исходной точки одинаковое расстояние
Мерой кривизны пространства является отклонение полной длины
«деформированной» окружности (т.е. длины замкнутой
кривой, проходящей через всех муравьев к концу их путешествия) от
величины 2
Кривизна поверхности может меняться от точки к точке. Поверхность может быть в одной своей части плоской, а в других обладать положительной или отрицательной кривизной. Чтобы исследовать поверхности переменной кривизны, математики дрессируют своё муравьиное войско так, чтобы муравьи уходили от исходной точки лишь на очень малое расстояние. Тогда у математиков появляется возможность измерять кривизну поверхности в разных её местах.