Законы Кеплера это эмпирические законы. Он потратил много лет,
проверяя разные предположения, пока, наконец, не нашёл правильный
результат. Совершенно иначе, чем Кеплер, действовал Исаак Ньютон
(рис. 4.8), выбравший чисто теоретический подход к проблеме движения
планет. В XVII в. Ньютон сформулировал три основных закона о природе
движения. Согласно его первому закону, все тела сохраняют состояние
покоя или равномерного и прямолинейного движения, если на них не
действуют внешние силы. Однако планеты движутся не по прямолинейным
траекториям. Следовательно, должна существовать сила, действующая на
планеты и вынуждающая их двигаться по эллиптическим орбитам. Применив
к законам Кеплера строгие математические методы, Ньютон установил,
что эта сила всегда направлена в сторону Солнца; ему удалось также
определить, как именно зависит эта сила от расстояния от Солнца до
планеты, получившая название всемирного тяготения (гравитации), а
Ньютоново описание того, как она действует, выражено в его
РИС. 4.9.
Хотя закон тяготения Ньютона лучше всего выражается математически формулой, зависимость силы тяготения от расстояния можно изобразить и графически (рис. 4.9). Допустим, что вы находитесь на расстоянии 1 м от тела, притягивающего вас с силой 1 кг. При удвоении расстояния до источника тяготения сила гравитации станет вчетверо меньше. Соответственно на расстоянии 3 м сила тяготения будет равна лишь 1/9 кг. Приближаясь к источнику тяготения, вы заметите, что гравитация усиливается. На расстоянии 0,5 м эта сила учетверится, а на расстоянии 10 см гравитационная сила достигнет 100 кг.
Можно привести и другой наглядный пример поведения гравитации. Представьте себе человека весом 60 кг, стоящего на поверхности Земли (рис. 4.10). Округляя значение радиуса Земли, можно сказать, что человек находится на расстоянии 6500 км от центра источника тяготения. Пусть теперь он поднимется на вершину лестницы - стремянки высотой 6500 км. Он окажется тогда вдвое дальше от центра Земли и будет весить поэтому вчетверо меньше, чем прежде. Если поставить на верх стремянки обычные напольные весы, то он найдет, что его вес равен всего 15 кг.
РИС. 4.10.
Существенно, что точно такой же результат получится в том случае, когда радиус Земли возрастет вдвое. Если расстояние между всеми атомами, составляющими Землю, удвоится, то удвоится и поперечник нашей планеты. Число атомов Земли останется прежним, так что мы не добавим и не убавим ни одного грамма вещества. Мы всего-навсего иначе разместим вещество, из которого состоит Земля. Тогда наш приятель, весивший 60 кг, окажется на расстоянии 13000 км от центра Земли и будет весить только 15 кг.
Поведение гравитации можно иллюстрировать и обратными примерами. Если сжать Землю вдвое по сравнению с её исходными размерами, то наш приятель станет весить вчетверо больше, т.е. 240 кг. Сжав Землю до одной десятой её прежних размеров, мы обнаружим, что стоящий на её поверхности человек будет весить уже 6 т.
Отсюда ясно, что если бы можно было сжимать тела до очень малых размеров, то стало бы возможно создавать чрезвычайно сильные гравитационные поля. Если бы удалось заставить сжаться до ничтожно малых размеров звезду, Землю или просто песчинку, то сила тяжести на поверхности образовавшегося тела стала бы столь велика, что даже свет не мог бы её покинуть. В 1795 г. французский математик Лаплас отметил это интересное свойство гравитации: что скорость убегания с очень сильно сжатого или очень массивного объекта может превысить скорость света. Но прошло целых 170 лет, пока астрономы поняли многие аспекты эволюции звёзд, рассмотрели всерьёз последствия рождения наблюдаемой нами Вселенной в чудовищном взрыве и начали исследовать свойства сверхсильных гравитационных полей.