Читаем Космические рубежи теории относительности полностью

Сформулировав закон тяготения, Ньютон обнаружил, что он теперь может не только чисто математически вывести и проверить законы Кеплера, но и сделать гораздо больше. Например, Ньютон доказал с помощью разработанных им математических методов, что орбиты тел, движущихся около Солнца, могут быть любой кривой из семейства конических сечений. Коническим сечением называется кривая, получающаяся при сечении конуса плоскостью (рис. 4.11). К коническим сечениям относятся окружности, эллипсы, параболы и гиперболы. По какой именно из этих орбит будет двигаться данное тело, определяется значением его скорости. При сравнительно малой скорости объект движется по замкнутой кривой - окружности или эллипсу. Но если скорость тела достаточно велика, его энергии хватит, чтобы покинуть Солнечную систему. Такой объект (скажем, комета) будет двигаться по параболической или гиперболической орбите.

РИС. 4.11. Конические сечения. Коническое сечение - кривая, которая получается, если конус рассечь плоскостью. В сечении будет эллипс, парабола или гипербола.

РИС. 4.12. Уран и три его луны. Уран был случайно открыт в 1781 г. Спустя несколько десятилетий астрономы обнаружили, что он движется по небосводу иначе, чем этого требуют точные расчёты. (Ликская обсерватория.)

В течение двухсот лет, прошедших после пионерских работ Ньютона, его закон тяготения получил множество убедительных и ярких подтверждений. Так, Вильям Гершель в 1781 г. совершенно случайно открыл в созвездии Близнецов планету Уран (рис. 4.12). После необходимых измерений её положений на небе была рассчитана орбита Урана в соответствии с ньютоновским законом тяготения. Но к 1840 г. астрономы убедились, что Уран в своем движении по небосводу отклоняется от вычисленного пути. Быть может, на таком большом расстоянии от Солнца закон тяготения неверен? Едва ли! В Англии один студент - астроном произвел сложные вычисления и показал, что необычное поведение Урана можно полностью объяснить воздействием на него более далёкой от Солнца, чем Уран, планеты. Такая дополнительная, хотя и незначительная сила слегка отклоняла движение Урана от теоретически высчитанного пути. К сожалению, на результаты вычислений этого юноши не обратили должного внимания - ведь он был только студентом. А вскоре независимо такие же вычисления проделал один французский астроном, который также предсказал и положение на небосводе этой ещё не открытой планеты. Он написал об этом в одну немецкую обсерваторию. В день получения письма погода была ясная, и в ту же ночь человек впервые увидел восьмую планету Солнечной системы - Нептун (рис. 4.13). Закон всемирного тяготения Ньютона оказался столь точным и столь универсальным, что с его помощью удалось предсказать существование ещё не известной ранее планеты! Нечего и говорить, какие бурные споры начались между английскими и французскими астрономами о том, кому принадлежит честь открытия...

РИС. 4.13. Нептун и самый крупный из его спутников. Астрономы предсказали существование Нептуна, чтобы объяснить аномалии движения Урана. Нептун был открыт поистине «на кончике пера». (Ликская обсерватория.)

Но несмотря на все успехи закона тяготения, к концу XIX в. стало очевидно, что с орбитой самой близкой к Солнцу планеты - Меркурия - не всё в порядке. Теоретически, если учесть влияния на Меркурий притяжения всех остальных известных планет, то «в остатке» должен был бы получиться идеальный эллипс с Солнцем в одном из его фокусов. Однако на практике этот «остаток» приводил к ничем не объяснимому очень медленному повороту эллипса. По существу, орбита Меркурия имеет вид розетки, которая в сильно увеличенном виде изображена на рис. 4.14.

РИС. 4.14. Орбита Меркурия. На рисунке показано, что орбита Меркурия очень медленно поворачивается вперёд по ходу движения планеты. Это свойство не поддаётся объяснению с помощью законов Ньютона.

Учитывая историю с Ураном и Нептуном, некоторые астрономы выдвинули предположение о существовании неизвестной планеты между Солнцем и Меркурием - Вулкана и принялись за её поиски, но безуспешно. Тогда другие астрономы предложили несколько видоизменить закон Ньютона, однако те поправки, которые нужно было ввести в закон для объяснения движения Меркурия, приводили к неверным результатам для внешних планет. Одним словом, классической физике Ньютона не удалось объяснить незначительную, но тревожную аномалию движения Меркурия. Пришла пора снова радикально перестроить наши представления.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука