Сформулировав закон тяготения, Ньютон обнаружил, что он теперь
может не только чисто математически вывести и проверить законы
Кеплера, но и сделать гораздо больше. Например, Ньютон доказал с
помощью разработанных им математических методов, что орбиты тел,
движущихся около Солнца, могут быть любой кривой из семейства
РИС. 4.11.
РИС. 4.12.
В течение двухсот лет, прошедших после пионерских работ Ньютона, его закон тяготения получил множество убедительных и ярких подтверждений. Так, Вильям Гершель в 1781 г. совершенно случайно открыл в созвездии Близнецов планету Уран (рис. 4.12). После необходимых измерений её положений на небе была рассчитана орбита Урана в соответствии с ньютоновским законом тяготения. Но к 1840 г. астрономы убедились, что Уран в своем движении по небосводу отклоняется от вычисленного пути. Быть может, на таком большом расстоянии от Солнца закон тяготения неверен? Едва ли! В Англии один студент - астроном произвел сложные вычисления и показал, что необычное поведение Урана можно полностью объяснить воздействием на него более далёкой от Солнца, чем Уран, планеты. Такая дополнительная, хотя и незначительная сила слегка отклоняла движение Урана от теоретически высчитанного пути. К сожалению, на результаты вычислений этого юноши не обратили должного внимания - ведь он был только студентом. А вскоре независимо такие же вычисления проделал один французский астроном, который также предсказал и положение на небосводе этой ещё не открытой планеты. Он написал об этом в одну немецкую обсерваторию. В день получения письма погода была ясная, и в ту же ночь человек впервые увидел восьмую планету Солнечной системы - Нептун (рис. 4.13). Закон всемирного тяготения Ньютона оказался столь точным и столь универсальным, что с его помощью удалось предсказать существование ещё не известной ранее планеты! Нечего и говорить, какие бурные споры начались между английскими и французскими астрономами о том, кому принадлежит честь открытия...
РИС. 4.13.
Но несмотря на все успехи закона тяготения, к концу XIX в. стало очевидно, что с орбитой самой близкой к Солнцу планеты - Меркурия - не всё в порядке. Теоретически, если учесть влияния на Меркурий притяжения всех остальных известных планет, то «в остатке» должен был бы получиться идеальный эллипс с Солнцем в одном из его фокусов. Однако на практике этот «остаток» приводил к ничем не объяснимому очень медленному повороту эллипса. По существу, орбита Меркурия имеет вид розетки, которая в сильно увеличенном виде изображена на рис. 4.14.
РИС. 4.14.
Учитывая историю с Ураном и Нептуном, некоторые астрономы выдвинули предположение о существовании неизвестной планеты между Солнцем и Меркурием - Вулкана и принялись за её поиски, но безуспешно. Тогда другие астрономы предложили несколько видоизменить закон Ньютона, однако те поправки, которые нужно было ввести в закон для объяснения движения Меркурия, приводили к неверным результатам для внешних планет. Одним словом, классической физике Ньютона не удалось объяснить незначительную, но тревожную аномалию движения Меркурия. Пришла пора снова радикально перестроить наши представления.