Читаем Космические рубежи теории относительности полностью

Кроме главной последовательности имеется другая большая группа звёзд в правом верхнем углу диаграммы Герцшпрунга-Рассела. Эти звёзды являются яркими и холодными. Они излучают света в тысячи раз больше, чем Солнце, но их поверхностные температуры составляют всего от 3000 до 4000 К. Значит, эти звёзды должны быть гигантскими по своим размерам. Если поместить одну из них в центре Солнечной системы, то орбита Земли окажется расположенной ниже её поверхности. Для таких звёзд обычны диаметры в несколько сотен миллионов километров. Поскольку эти звёзды холодные, они излучают главным образом красноватый свет. Поэтому их называют красными гигантами.

Почти каждая красноватая звезда, которую можно увидеть на небе, - это красный гигант. Поистине яркие примеры - Бетельгейзе в Орионе, Антарес в Скорпионе, Альдебаран в Тельце. Все прочие звёзды, видимые невооруженным глазом, - это звёзды главной последовательности.

В хороший телескоп можно обнаружить звёзды ещё одного типа, которые не относятся ни к красным гигантам, ни к главной последовательности. Этот третий тип включает очень горячие и очень слабые звёзды. Характерная поверхностная температура этих звёзд от 10000 до 20000 К, а излучают они лишь 1/100 часть света, испускаемого Солнцем. Поэтому точки, изображающие эти звёзды, сосредоточены в нижнем левом углу диаграммы Герцшпрунга-Рассела. Очень горячие звёзды испускают в основном голубовато - белый свет; значит, эти слабые звёзды должны быть очень невелики. Как правило, они имеют размеры, близкие к размерам Земли (т. е. диаметр порядка 15 000 км), и поэтому их называют белыми карликами.

Роль диаграммы Герцшпрунга-Рассела трудно переоценить. По многим причинам её вполне можно назвать самым важным графиком во всей астрономии. Существуют какие-то важные причины, по которым большинство звёзд - это либо звёзды главной последовательности, либо красные гиганты, либо белые карлики. Разумеется, существует несколько исключений, но факт остаётся фактом - большинство звёзд миллиарды лет своей биографии остаются членами одного из этих трёх основных типов.

В начале главы мы отметили, что звёзды должны эволюционировать. Это означает, что на протяжении всего времени жизни звезда должна менять свою светимость и поверхностную температуру. Иными словами, точка, изображающая звезду, должна перемещаться по диаграмме Герцшпрунга-Рассела. Поэтому понять, как звёзды меняют своё положение на диаграмме Герцшпрунга-Рассела, - значит узнать, как звёзды рождаются, как они выглядят в «зрелые годы» и что с ними происходит, когда они «умирают».

Прежде чем приступить к решению проблемы жизненного цикла звёзд, астроному необходимо выяснить ещё одно обстоятельство: нужно узнать, сколько вещества содержится в звезде, т.е. чему равны массы звёзд.

Как это ни кажется странным, почти половина звёзд, наблюдаемых на небе, - это не одиночные звёзды, как наше Солнце. Обычно это пары звёзд, обращающихся вокруг общего центра масс (подобно тому, как Земля и Луна обращаются друг относительно друга). Такие системы (рис. 6.4) называются двойными звёздами. Двойные звёзды представляют большую важность для астрономов, поскольку, наблюдая движение компонентов в двойной системе, можно точно определить массы этих звёзд. Наблюдая, как две звезды движутся около общего центра масс, астроном может с помощью ньютоновской механики вычислить, какими массами обладают эти звёзды. Таким путём астрономия получает данные о количестве вещества, содержащегося в звёздах.

РИС. 6.4. Двойная звезда. Многие звёзды, которые мы видим на небе, на самом деле состоят из двух звёзд, очень близких друг к другу и обращающихся по орбитам вокруг общего центра масс.

РИС. 6.5. Соотношение масса-светимость. Массы и светимости звёзд главной последовательности связаны между собой так, как это видно из графика. Слабые звёзды облагают самыми малыми массами (1/10 массы Солнца или даже меньше), а наиболее яркие звёзды самые массивные (до 50 масс Солнца).

Данные об измерениях масс для многих двойных систем удобнее всего представить в форме графика (рис. 6.5). Оказывается, самые слабые звёзды вместе с тем и наименее массивные. Обычно такие звёзды имеют раз в десять меньшие массы, чем Солнце. С другой стороны, звёзды с наибольшей светимостью - самые массивные; известны звёзды с массами в 40 и даже 50 солнечных. Эта связь между массой и светимостью для звёзд главной последовательности называется соотношением масса-светимость.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука