Читаем Космические рубежи теории относительности полностью

В результате многочисленных и кропотливых вычислений, проводившихся с начала 1960-х годов, удалось представить весь жизненный путь звезды типа Солнца как движение точки, изображающей эту звезду, по диаграмме Герцшпрунга-Рассела. Как видно из рис. 6.11, первоначальное сжатие протозвезды приводит к быстрому падению светимости по мере уменьшения её размеров. Это сопровождается ростом поверхностей температуры при разогреве атмосферы звезды. Когда в центре звезды начинается «сжигание» водорода, изображающая звезду точка останавливается на главной последовательности и остаётся там в течение порядка 10 миллиардов лет. Переход в область красных гигантов совершается также очень быстро. Когда же включается «сжигание» гелия, точка остаётся в верхнем правом углу диаграммы Герцшпрунга-Рассела на несколько сот миллионов лет. Затем возникает неустойчивость, и точка вновь начинает быстро двигаться через диаграмму Герцшпрунга-Рассела, и, хотя этот эволюционный путь во всех подробностях ещё неясен (звезда изменяется так быстро, что ЭВМ не поспевает за ней в своих вычислениях), известно, что всё кончается на белом карлике. Белые карлики - это умершие звезды. Они слабо светят в космосе и остывают, как остывает чашка кофе, забытая на кухонном столе. По мере остывания белые карлики становятся всё слабее и слабее. Точка, изображающая белый карлик, медленно сползает по кривой остывания вниз и вправо по диаграмме.

РИС. 6.11. Эволюция звезды. Весь цикл жизни звезды типа Солнца можно изобразить как движение точки по диаграмме Герцшпрунга-Рассела. Эта точка сначала останавливается на долгое время на главной последовательности, а затем в области красных гигантов и заканчивает свой путь в области белых карликов. Этапы перехода из одной области в другую проходятся очень быстро.

Следует подчеркнуть несколько важных фактов, относящихся к звёздной эволюции. Прежде всего самые массивные звёзды главной последовательности - это вместе с тем и самые яркие. Они яркие потому, что водород в них «сжигается» в бешеном темпе. Несмотря на большую массу и соответственно огромные запасы горючего, водород в сердцевине таких звёзд истощается очень скоро. Иными словами, самые массивные звёзды и эволюционируют быстрее всего.

Во-вторых, исследование планетарных туманностей и остатков сверхновых наводит нас на мысль, что самые массивные звёзды могут выбрасывать в космос часть своего вещества (но, вероятно, не всё), так что сохраняются лишь «останки» звезды.

Наконец, как обсуждается в следующей главе, астрофизики твердо уверены в существовании чёткого верхнего предела массы белого карлика. Белый карлик должен иметь массу, меньшую 1,25 массы Солнца.

Итак, перед нами встает явно нелегкая задача. Представьте себе массивную звезду типа Ригеля в созвездии Ориона. Звезда этого типа обладает массой в 40 масс Солнца и поэтому эволюционирует очень быстро. Но для того, чтобы стать белым карликом, она должна выбросить в космос почти 39 солнечных масс вещества. Насколько можно судить по тому, что знают астрономы о планетарных туманностях и остатках взрывов сверхновых, это слишком большая доля.

До середины 1960-х годов было общепринятым думать, что даже самые массивные звёзды ухитряются каким-то путём сбросить достаточное количество вещества, чтобы спуститься пониже критического предела масс белых карликов. Но к концу 1960-х годов радиоастрономы сделали ряд замечательных открытий, серьёзно поколебавших эту распространенную точку зрения. Ростки этих сомнений дали плоды: в начале 1970-х годов астрофизики начали всерьёз рассматривать возможность существования самых поразительных объектов, когда-либо пришедших в голову человеку. Речь идет о чёрных дырах.

7

БЕЛЫЕ КАРЛИКИ ПУЛЬСАРЫ И НЕЙТРОННЫЕ ЗВЁЗДЫ

Одним из решающих прорывов в понимании природы света послужила в середине XIX в. формулировка Максвеллом электромагнитной теории. Как говорилось в гл. 2, теория Максвелла привела к фундаментальному волновому уравнению, которое даёт полную картину всех волновых свойств света. Замечательно, что это волновое уравнение не накладывает никаких ограничений на допустимые длины волн электромагнитного излучения. Заметим, что видимый свет, доступный нашему глазу, ограничен узким диапазоном длин волн - примерно от 7,7•10-5 см для красного света и до 4,55•10-5 см для фиолетового. Иными словами, согласно теории Максвелла, должны существовать и другие типы электромагнитного излучения, обладающие как намного более длинными, так и намного более короткими длинами волн, чем видимый свет. В этом смысле теория электромагнетизма действительно предсказала существование рентгеновских лучей, гамма-лучей, радиоволн, а также и ультрафиолетового и инфракрасного излучения.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука