Читаем Космические рубежи теории относительности полностью

РИС. 8.3. Шварцшильдовская чёрная дыра. Простейшая идеальная чёрная дыра (незаряженная и невращающаяся) окружена фотонной сферой. Сферический горизонт событий представляет собою «поверхность» чёрной дыры. В центре дыры находится сингулярность.

Данные о структуре шварцшильдовской чёрной дыры подытожены на рис. 8.3. Прежде всего чёрную дыру окружает фотонная сфера, состоящая из лучей света, движущихся по неустойчивым круговым орбитам. Внутри фотонной сферы находится горизонт событий - односторонне пропускающая поверхность в пространстве-времени, из которой ничто не может вырваться. Наконец, в центре чёрной дыры находится сингулярность. Всё то, что проваливается сквозь горизонт событий, засасывается в сингулярность, где оно под действием бесконечно сильно искривлённого пространства-времени прекращает своё существование. На рис. 8.4 и 8.5 показаны соответственно зависимости между массой чёрной дыры и поперечниками её фотонной сферы и горизонта событий.

РИС. 8.4. Размеры фотонной сферы. График показывает, как зависит диаметр фотонной сферы, окружающей шварцшильдовскую чёрную дыру, от её массы. Так, например, дыра с массой в 3 солнечные массы окружена фотонной сферой с поперечником около 26 км.

РИС. 8.5. Размеры горизонта событий. Поперечник горизонта событий, окружающего шварцшильдовскую чёрную дыру, зависит от её массы. Например, дыра с массой в 3 массы Солнца окружена горизонтом событий с поперечником около 18 км.

После того как умирающая звезда заходит за свою фотонную сферу и приближается к горизонту событий, от неё в окружающую Вселенную может вырваться все меньше и меньше световых лучей. Иллюстрированные на рис. 8.2 эффекты становятся всё более заметными. Подобный захват лучей света коллапсирующей звездой можно описать с помощью воображаемого конуса, показанного на рис. 8.6 и называемого конусом выхода. Навсегда уйти от звезды могут только те лучи, которые покидают её в пределах конуса выхода. Лучи же, идущие от поверхности звезды вне конуса выхода, отклоняются назад, к её поверхности.

РИС. 8.6. Конус выхода. С помощью этого воображаемого конуса удобно разделять световые лучи на способные покинуть звезду и на те лучи, которые она от себя не отпускает. Уйти в окружающую Вселенную удаётся только тем лучам, которые испущены с поверхности звезды под углами, заключенными во внутренней части конуса выхода.

По мере приближения катастрофического коллапса массивной звезды к его неизбежному концу, лучам света с поверхности звезды становится всё труднее и труднее уйти навсегда от звезды. Эти уходящие вовне лучи должны быть испущены внутри всё более сужающегося конуса с осью, направленной вдоль вертикали. Иными словами, по мере того как звезда подходит к своему горизонту событий, конус выхода схлопывается. Непосредственно над границей фотонной сферы конус выхода широко раскрыт. От звезды могут уйти лучи света, испущенные под любыми углами. Но когда звезда подходит к своему горизонту событий, конус выхода становится настолько узким, что все лучи света в конце концов заворачиваются назад, к поверхности звезды.

Поведение конуса выхода даёт первое важное указание на то, как должна выглядеть звезда, превращающаяся в чёрную дыру. По мере схлопывания конуса выхода от звезды уходит всё меньше и меньше света. Поэтому астроном, наблюдающий подобную звезду издалека, видит её всё более и более слабой. Фактически такое убывание яркости умирающей звезды происходит очень быстро. Рассмотрим, например, образование чёрной дыры из звезды с массой в 10 солнечных масс. Как показано на рис. 8.7, с приближением поверхности звезды к горизонту событий её яркость убывает с невероятной быстротой. Спустя всего 1/1000 с после начала гравитационного коллапса конус выхода становится настолько узким, что лишь одна квадрильонная (10-15!) света звезды может ускользнуть во внешнюю Вселенную. Всего миг - и бывшая яркая звезда становится почти совершенно чёрной!

РИС. 8.7. Светимость коллапсирующей звезды. Сразу после начала конечного этапа коллапса звезда становится чрезвычайно слабой за очень короткий промежуток времени. График построен для звезды с массой 10 солнечных. Всего через 1/1000 с светимость звезды падает до 2% первоначальной, а спустя 1/100 с она составляет менее одной квадрильонной (10-15) первоначальной.

Перейти на страницу:

Похожие книги