Читаем Космические рубежи теории относительности полностью

Здесь внимательный читатель мог бы выразить недоумение. В конце концов, если наблюдатели в плоском пространстве-времени (например, астрономы на Земле) никогда не могут видеть, как что-нибудь опускается под горизонт событий, могут ли вообще возникать сами чёрные дыры? Не потребуется ли бесконечно длительный срок (с нашей точки зрения) для того, чтобы поверхность умирающей звезды достигла горизонта событий? И да, и нет! Безусловно верно, что последние несколько атомов на поверхности коллапсирующей звезды никогда не уйдут за горизонт событий. Но дело не в этом. Как можно видеть из рис. 8.7, вся звезда становится практически чёрной уже спустя несколько тысячных секунды после начала коллапса. При формировании горизонта событий можно считать, что почти вся звезда уже очутилась за горизонтом. Вещество под горизонтом событий очень быстро падает на сингулярность. Эту картину можно изобразить на трёхмерной диаграмме пространства-времени (рис. 8.12). Для случая решения Шварцшильда радиус горизонта событий часто называют шварцшильдовским радиусом. Как только необходимое количество вещества уйдет под шварцшильдовский радиус, образуется горизонт событий, и это вещество оказывается в ловушке, где оно коллапсирует до самой сингулярности. А несколько замешкавшихся атомов из внешних слоёв умирающей звезды так и не смогут никогда перебраться под горизонт событий и обречены вечно парить над поверхностью со шварцшильдовским радиусом. Но участь этих нескольких отставших атомов не представляет интереса ни для каких практических целей.

РИС. 8.12. Образование чёрной дыры. После того как в области с поперечником меньше 2 шварцшильдовских радиусов соберется достаточное количество вещества, вокруг последнего возникает горизонт событий. Затем захваченное вещество быстро падает на сингулярность в центре чёрной дыры.

Разобраться в структуре чёрных дыр удобнее всего, представив себе воображаемое путешествие на космическом корабле, оборудованном большими смотровыми иллюминаторами. В ряде следующих глав мы используем такую «технику» и сможем узнать, что увидели бы бесстрашные астрономы, если бы они действительно отправились в путешествие к различным типам чёрных дыр, в сами эти дыры и даже сквозь них.

РИС. 8.13. Космический корабль. Два любознательных астронома решили выяснить, как же в действительности выглядит чёрная дыра. Для этого они построили космический корабль, снабженный двумя иллюминаторами. Носовой иллюминатор обращен прямо на середину чёрной дыры, а кормовой направлен во внешнюю Вселенную. Из каждого иллюминатора видна в точности половина небесной сферы. Корабль оборудован также мощными реактивными двигателями, с помощью которых космонавты могут зависать над чёрной дырой на разных высотах.

Вообразим себе космический корабль, показанный на рис. 8.13. Он снабжен двумя большими иллюминаторами. Носовой иллюминатор смотрит прямо в центр чёрной дыры, а кормовой - в противоположном направлении, позволяя обозревать окружающую Вселенную. Из каждого иллюминатора видна в точности половина всего неба. Кроме того, наш космический корабль обладает очень мощными ракетными двигателями, позволяющими ему удерживаться на разных высотах над горизонтом событий. На борту корабля находятся два астронома, которые фотографируют с различных расстояний от чёрной дыры всё, что им видно из иллюминаторов.

Для удобства наши космические астрономы выражают своё расстояние от чёрной дыры в шварцшильдовских радиусах, а не милях или километрах. Вспомним, что шварцшильдовский радиус - это радиус горизонта событий. Чем массивнее чёрная дыра, тем больше её шварцшильдовский радиус. В табл. 8.1 приведены значения шварцшильдовского радиуса чёрных дыр, обладающих разными массами.


Таблица 8.1


ШВАРЦШИЛЬДОВСКИЕ РАДИУСЫ ЧЁРНЫХ ДЫР,


ОБЛАДАЮЩИХ РАЗНЫМИ МАССАМИ




Масса чёрной дыры

Шварцшильдовский радиус


(радиус горизонта событий)




1

т

13•10

-15

Å


10

6

т

13•10

-9

Å


10

12

т

13•10

-3

Å


10

15

т

13 Å


1

масса Земли

0,8 см


1

масса Юпитера

2,8 м


1

масса Солнца

3 км


2

массы Солнца

6 км


3

массы Солнца

9 км


5

масс Солнца

15 км


10

масс Солнца

30 км


50

масс Солнца

150 км


100

масс Солнца

300 км


10

3

масс Солнца

3•10

3

км


10

6

масс Солнца

10 световых секунд


10

9

масс Солнца

2,8 свет. часов


10

12

масс Солнца

117 свет. дней


10

15

масс Солнца

320 свет. лет




Эта таблица тесно связана с рис. 8.5. Поперечник горизонта событий чёрной дыры - это в точности удвоенная величина её шварцшильдовского радиуса. Далее, раз поперечник горизонта событий равен удвоенному шварцшильдовскому радиусу, то поперечник фотонной сферы - это утроенный шварцшильдовский радиус.

Перейти на страницу:

Похожие книги