Согласно математической теории бесконечных чисел, которую построил Кантор, количество чётных чисел является точно таким же, как и количество всех натуральных чисел! Более того, множество чисел, кратных 10, – 10, 20, 30, 40 и т. д. – это бесконечное множество точно такого же размера, как и множество натуральных чисел. Натуральные числа, чётные или нечётные числа, числа, которые делятся на десять, – это всё примеры того, что математики называют бесконечными
Давайте проведём с бесконечными числами мысленный эксперимент. Представьте себе бесконечный мешок, в котором лежат все натуральные числа, записанные на клочках бумаги. Сначала тщательно потрясём мешок, чтобы все бумажки как следует перемешались. Теперь засунем в него руку и вытащим одну бумажку. Какова вероятность того, что записанное на бумажке число будет чётным?
Напрашивающийся ответ: 50 процентов. Поскольку половина чисел в мешке чётные, то и вероятность вытащить чётное число должна быть равна одной второй. Но мы не можем проделать такой эксперимент в реальном мире, потому что никто не может сделать бесконечный мешок для натуральных чисел. Для проверки теории мы можем прибегнуть к небольшой хитрости и использовать конечный мешок, содержащий, скажем, первую тысячу натуральных чисел. Если мы повторим эксперимент много раз, то обнаружим, что вероятность вытянуть чётное число действительно близка к одной второй. Затем мы можем провести этот же эксперимент с мешком, в котором находятся первые десять тысяч натуральных чисел. И опять мы обнаружим, что вероятность вытащить чётное число равна одной второй. Проводя эксперимент с первыми 100 000 натуральных чисел, с первым миллионом натуральных чисел, с первым миллиардом и т. д., мы каждый раз будем получать вероятность, равную одной второй. Разумно экстраполировать результат нашего эксперимента на бесконечное количество натуральных чисел и предположить, что вероятность по-прежнему останется равной одной второй.
Но погодите. Мы можем изменить содержимое мешка следующим образом. Положим в первом эксперименте в мешок
Вечно раздувающаяся Вселенная – это бесконечный мешок, только наполненный не клочками бумажек с числами, а карманными вселенными. Это мешок, в котором любой наперёд заданный вариант вселенной – любая долина Ландшафта – содержится бесконечно счётное количество раз. Не существует очевидного математического способа сравнить количество экземпляров одного вида карманной вселенной с количеством другого и объявить, что один вариант является более вероятным, чем другой. Следствие из этого факта представляется очень тревожным: похоже, что нет способа определить относительную распространённость различных антропно-приемлемых вакуумов.
В прошлом физика уже сталкивалась с многочисленными проблемами, связанными с бесконечными числами: с ультрафиолетовой катастрофой, успешно предотвращённой Максом Планком, или с расходимостями в первых вариантах квантовой теории поля. Даже проблемы чёрных дыр, из-за которых спорили Хокинг и ‘т Хоофт, тоже связаны с бесконечностью. Согласно расчётам Хокинга, горизонт чёрной дыры способен безвозвратно поглотить бесконечное количество информации. Всё это были глубокие проблемы трансфинитных или бесконечных чисел. И в каждом случае приходилось находить новые физические принципы, прежде чем мог быть достигнут какой-либо прогресс. В случае Планка это была квантовая механика, а именно открытие Эйнштейном того, что свет состоит из квантов. Бесконечные числа, досаждавшие квантовой теории поля, были побеждены только после открытия Кеннетом Вильсоном принципа перенормировки. История с чёрными дырами продолжается до сих пор, но контуры решения задачи уже намечены в виде голографического принципа. В каждом случае оказывалось, что классические методы расчёта завышали количество степеней свободы, которыми описывается мир.
А. А. Писарев , А. В. Меликсетов , Александр Андреевич Писарев , Арлен Ваагович Меликсетов , З. Г. Лапина , Зинаида Григорьевна Лапина , Л. Васильев , Леонид Сергеевич Васильев , Чарлз Патрик Фицджералд
Культурология / История / Научная литература / Педагогика / Прочая научная литература / Образование и наука