Чтобы попытаться прояснить ситуацию, вернемся к полету СТРЕЛЫ. Когда мы изображали ее путь в пространстве и времени, это казалось довольно простым делом. В разные моменты времени мы отмечали ее положение в пространстве и одновременно фиксировали время. Каждая пара отсчетов определяла точку на графике, и мы вырисовывали траекторию стрелы, соединяя эти точки. Эта траектория в действительности представляет собой набор меток — каждой точке линии соответствуют числа; назовем их
Для того чтобы почувствовать, что такое мировые линии, представим подобные траектории для разных видов движения объектов, как это изображено на рисунке на стр. 40. (Из-за того, что на двумерном листе бумаги можно изобразить только движение в одномерном пространстве, на графике, кроме времени, отложена лишь одна пространственная координата — скажем, расстояние от некоторой точки по линии запад-восток.) Равномерное движение будет представлено прямой линией, причем чем медленнее движение, тем круче наклон прямой, поскольку при медленном движении объекту требуется больше времени для преодоления определенного расстояния. Для покоящегося объекта мировая линия будет вертикальной прямой, для стрелы — почти горизонтальной, поскольку стрела летит очень быстро и только со временем, когда она замедляется, ее мировая линия слегка искривляется в сторону вертикали. Для вращающегося объекта соответствующая мировая линия будет выглядеть как волнообразная кривая, а для резвящегося щенка мировая линия будет напоминать запутанный клубок.
Где на этом графике время? Мы можем его рассматривать с двух точек зрения. Во-первых, как временные
Исходя из этого, словосочетание «движение во времени» становится несколько более осмысленным: время, так же как и пространство, дано нам в ощущениях, и, по мере того как отсчитывается наше
И все же, глядя на картинки такого рода, мы упускаем довольно важные аспекты нашего восприятия времени. Во-первых, если мы посмотрим на сколь угодно большое количество мировых линий реальных объектов, то заметим, что на всех кривых отсутствуют некие детали: вы никогда не увидите траекторию, которая делает петлю и возвращается назад к прежнему значению по оси