Как же эти два замечательных, но сложных для понимания процесса — один, в котором участвуют нейроны и синапсы, и другой, ментальный,
процесс — связаны между собой? Это один и тот же процесс? Или один порождает другой? Какое отношение возбуждение синапсов и связывание дендритов имеют к ощущению, вызванному отражением света от меча, или к ощущениям от обдумывания только что возникшего ощущения, вызванного отражением света от меча?Это очень трудная проблема. Она буквально так и называется — «трудная проблема сознания». Дэвид Чэлмерс, который и ввел в употребление этот термин, сформулировал ее так:
Сознание — глубочайшая тайна. Оно может быть самым большим препятствием на пути нашего научного представления об устройстве Вселенной… И до сих пор кажется невероятно загадочным то, что поведение человека обусловлено в том числе и субъективными внутренними процессами… У нас не просто нет разработанной теории, мы находимся в полном неведении относительно того, как внешний порядок отражается в сознании[54]
.Начнем с вопроса хотя и очень сложного, но все же в каком-то смысле более простого: «Как физическая система, подчиняющаяся непреложным законам, вообще делает вычисления и умозаключения?»
Если мы спросим компьютер, сколько будет 23 + 17, причина, по которой на экране появится число 40, состоит в том, что, согласно уравнениям Максвелла и Шрёдингера, электроны, полупроводниковые элементы, провода и т. п. следуют предначертанным им правилам, что и приводит к появлению на экране светящихся цифр «4» и «о». Но, конечно, число «40» появляется на экране компьютера еще и потому, что 23 + 17 равно 40! Почему эти две вещи приводят к одному результату? И какова «истинная» причина этого? Принимает ли император династии Мин решения потому, что они справедливы, правильны и мудры — или потому, что вся иерархия педантичных бюрократов тщательно следует правилам и инструкциям, из которых вытекают эти решения? А может, по обеим причинам сразу?Однако вопрос по-прежнему слишком сложен. Упростим-ка его еще немного. Что это в принципе значит — что-то «вычислить»? В самом общем виде мы могли бы определить вычисление как свод правил, которые отображают входные данные в выходные. Логические элементы вроде AND, OR
и NOT, возможно, простейшие примеры таких правил, когда и входные, и выходные данные представлены в двоичном виде. Из этих элементов можно составить сложные системы, которые отображают очень сложные массивы одних двоичных данных в другие.В этом смысле физический компьютер очень похож на физическую установку, состоящую из стабильно работающих элементов, подчиняющихся физическим законам, которая надежно выдает одни и те же результаты при одних и тех же входных данных. Но в другом смысле компьютер совершенно не похож на физическое устройство, поскольку он — только средство для выполнения
вычислений. И элемент AND можно создать как с помощью электронов в полупроводниках, так и с помощью мячей для гольфа, или конструктора «Тинкертой», или паломников на площади, или органических молекул, или всего, что попадется под руку. Так же как с помощью целых чисел можно перенумеровать любые объекты, так и вычисления могут выполняться — и одинаково хорошо — на устройстве, сделанном из любых подручных материалов. И так же, как в математике, это значит, что мы можем на абстрактном уровне рассуждать и о вычислениях, и о том, что они дадут, и о том, какие вычисления можно сделать, а какие — нет.Было получено множество общих результатов касательно того, какие вычисления можно выполнить с помощью разнообразных комбинаций из логических элементов AND, OR
и NOT. Но это не единственный и даже не самый распространенный способ рассуждений о вычислениях. В начале двадцатых годов двадцатого века Алан Тьюринг, Алонсо Черч и другие ученые создали сложнейшую теорию вычислений, основанную на модели Тьюринга, которая сейчас называется машиной Тьюринга. Эта машина требует «магнитной ленты» — системы хранения надежно записываемой и считываемой информации, — а также «головки», которая может записывать и считывать эту информацию с ленты в соответствии с некоторой конечной системой правил. Про машины Тьюринга было доказано много теорем, в частности, было (несколько неожиданно) выяснено, что почти любое вычисление, которое вы в состоянии себе представить, может быть выполнено на правильно сконструированной и запрограммированной машине Тьюринга! Это может оказаться чрезвычайно неэффективно (вам понадобится очень много ленты!), но в принципе такое вычисление возможно.Например, с помощью соответствующей машины Тьюринга можно вычислить результат действия любого набора логических элементов на строку битов на входе. Поскольку это тот базис, на котором основана работа микропроцессоров и элементов современных компьютеров, из этого сразу следует, что все, что делает стандартный цифровой компьютер, эквивалентно некоторой машине Тьюринга.