Китайская биотехнологическая компания Sichuan Revotek Co объявила о создании первого в мире 3D-биопринтера, позволяющего печатать кровеносные сосуды для создания персонализированных человеческих органов.
В основе устройства лежит собственная технология китайской компании по созданию биочернил для печати стволовых клеток, объединённая с платформами облачных вычислений. Чернила, которые были названы Biosynsphere, позволяют создавать кровеносные сосуды с учётом особенностей организма отдельно взятого человека и потом на их основе «выращивать» новые органы.
В свою очередь группа учёных Пхоханского университета науки и технологии и Пусанского национального университета (Корея) разработала биочернила для 3D-печати кровеносных сосудов, необходимых для лечения ишемии (уменьшения или прекращения кровоснабжения органов из-за повреждения или закупорки сосудов) и других сердечно-сосудистых заболеваний. Учёные создали гибридные биочернила, смешав сосудистые EMC из тканей аорты свиньи с гидрогелем из альгината соды, из которых они напечатали кровеносные сосуды. Представленная технология, которую они разработали, позволяет создавать сосуды различного размера. После печати трубки выдерживаются в течение получаса при температуре 37 °C, после чего гидрогель растворяется и остаются полые сосуды.
Ранее специалисты из Ханчжоуского университета электроники представили рабочую станцию 3D-биопечати Regenovo (китайский конкурент калифорнийской компании Organovo, также работающей в области создания искусственной печени), позволяющей печатать структурно-функциональные единицы печени – печёночные доли.
О печати органов до сих пор говорят довольно редко, но учёные просто работали и смогли представить общественности живое сердце, напечатанное на 3D-принтере (TAU scientists print first ever 3D heart using patient’s own cells, 2019).
© Getty Images News
Сердце получилось маленькое, порядка 2,5 см, но зато полноценно функционирующее. До этого, как и было сказано, удавалось печатать отдельно простые ткани и кровеносные сосуды.
Сердце же, представленное 15 апреля 2019 года, воссоздано полностью, включая все кровеносные сосуды, желудочки и камеры. Оно состоит из жировых клеток донора, которые методом генной инженерии были преобразованы в стволовые клетки, а уже затем – в клетки сердечно-сосудистой мышцы и кровеносных сосудов, после чего их смешали с соединительной тканью и поместили в специальный биореактор 3D-принтера.
© Getty Images News
В конечном счёте получилось сердце, по сути, как у новорожденного, способное сокращаться. На то, чтобы напечатать этот крошечный орган, потребовались три часа и миллионы клеток. Для печати человеческого сердца в натуральную величину потребуются уже миллиарды клеток и не менее одного дня. Но об этом говорить пока рано. В первую очередь учёные ставят целью пересадить напечатанное сердце животному – кролику или крысе – в течение текущего года. Хотелось бы застать время, когда люди перестанут умирать в ожидании доноров. Теперь кажется, что это очень даже возможно.
Медицина будущего уже сегодня
Я так думаю, вы уже поняли, что осваивать космос и планеты Солнечной системы без развития новейших технологий, среди которых одним из приоритетных направлений являются аддитивные технологии в медицине, вряд ли получится. Несколько примеров прорывных исследований я уже привёл, но есть ещё одно, на котором я хотел бы заострить внимание.
Впервые одна из самых смертоносных форм опухоли головного мозга – глиобластома – была успешно напечатана на 3D-биопринтере в среде клеток мозга вместе с сосудами, снабжающими её кровью (LENA NEUFELD, 2021).
Глиобластома является довольно редкой, но, появляясь на мозге или стволе мозга, быстро растёт и почти всегда смертельна. Этот тип рака настолько агрессивен, что лечение должно быть максимально жёстким. Пациенты чаще всего не выдерживают всех необходимых курсов лучевой и химиотерапии.
Чтобы узнать как можно больше об этом типе рака, учёным необходимо работать с ним напрямую, а делать из страдающих пациентов подопытных животных – как минимум неэтично. Приходится проводить исследования со средами, выращенными в чашках Петри, но этот способ имеет множество ограничений.
К примеру, в одном из исследований учёные обнаружили белок, который вырабатывается, когда раковые клетки в глиобластоме сталкиваются с микроглиальными клетками в мозге, заставляя их действовать в поддержку глиобластомы, а не бороться с ней.
Проблема была в том, что этот белок удалось обнаружить в опухолях, полученных сразу после удаления у пациента, но не в клетках глиобластомы, выращенных в чашках Петри в лаборатории.
Причина в том, что рак, как и все ткани, в лабораторных условиях ведёт себя совсем иначе, чем в человеческом теле. Примерно 90 % всех экспериментальных препаратов терпят неудачу на клинической стадии, потому что успех, достигнутый в лаборатории, не воспроизводится у пациентов.