1974
г. Йогеш Пати (р. 1937) и Абдус Салам, а также Говард Джорджи (р. 1947) и Шелдон Глэшоу предлагают унификацию главных теорий.1974
г. Говард Джорджи, Хелен Квинн (р. 1943) и Стивен Вайнберг исследуют относительную интенсивность различных взаимодействий, используя асимптотическую свободу.1974
г. Юлиус Весс (1934–2007) и Бруно Дзумино (1923–2014) формулируют суперсимметрию.1977
г. Роберто Печчеи (р. 1942) и Хелен Квинн предлагают новую симметрию, чтобы решить «θ-проблему».1977 г.
Вильчек открывает возможность связывания бозона Хиггса с обычной материей через цветные глюоны.1978
г. Вильчек и Вайнберг указывают, что симметрия Печчеи – Квинн предполагает существование важной новой легкой частицы – аксиона.1981
г. Савас Димопулос (р. 1952), Стюарт Раби (р. 1947) и Фрэнк Вильчек демонстрируют количественные преимущества включения суперсимметрии в объединение взаимодействий.1983
г. Несколько авторов предлагают аксионы на роль частиц, из которых, возможно, состоит темная материя.1983
г. Карло Руббиа (р. 1934) и его коллеги в CERN[87] экспериментально наблюдают виконы (1990-е гг.
Эксперименты на Большом электрон-позитронном коллайдере LEP ясно демонстрируют струи, обеспечивая мощное количественное подтверждение асимптотической свободы и КХД.2005
г. На базе идей Кеннета Уилсона (1936–2013), Александра Полякова (р. 1945) и Майкла Кройца (р. 1944) с помощью сверхмощных компьютеров проводятся расчетные эксперименты для подтверждения КХД: теоретически вычисляются массы различных адронов, в том числе протона и нейтрона, очень близкие к определенным экспериментально.2012
г. На Большом адронном коллайдере открыта частица Хиггса.2020
г. Мои пари на открытие суперсимметрии на Большом адронном коллайдере истекают в полночь 31 декабря 2020 г.Термины
Этот раздел содержит определения и короткие комментарии к научным понятиям, которые могут быть не знакомы широкому кругу читателей и использованы в этой книге. В некоторых случаях (например, «энергия» или «симметрия») они объясняют общеупотребительные слова, которые мы используем особым образом – обычно в более узком и специальном значении, чем в их повседневном применении. Я старался, насколько было возможно, сделать его органичной частью единого целого, используя в комментариях темы и примеры из основного текста. Здесь вы также найдете несколько идей, некоторые из которых красивы – их мне очень хотелось включить в текст, но не удалось сделать это, сохранив гладкость повествования. Во многих случаях мне пришлось пожертвовать точностью и математической строгостью ради краткости и доступности.
Замечание по оформлению текста:
Будучи подверженными сильному взаимодействию
, кварки, антикварки и глюоны могут связываться и образовывать большое количество разнообразных небольших объектов.Большую часть адронов можно полуколичественно понять в рамках кварковой модели
. (См., если нужно, Качественный и количественный.) Согласно кварковой модели, адроны делятся на два обширных класса: барионы и мезоны. Барионы (класс, включающий протоны и нейтроны) – это связанные состояния, содержащие три кварка, в то время как мезоны – это связанные состояния, содержащие один кварк и один антикварк. (Также существуют антибарионы, состоящие из трех антикварков. См. Антивещество.) В более точном представлении, основанном на квантовой хромодинамике (КХД), эти две основные схемы должны считаться каркасом, который дополнен глюонами и дополнительными кварк-антикварковыми парами.Широко распространено мнение о том, что существуют адроны, которые выходят за рамки обеих схем кварковой модели, такие как «глюболы»[89]
, где глюоны преобладают над кварками и антикварками. Эта идея является предметом исследований в настоящее время.(См. также статью Квантовая хромодинамика
(КХД) и подробное обсуждение в главе «Квантовая красота III», часть 2.)