Это понятие возникает, когда мы обсуждаем силы применительно к непрерывным средам (в противоположность частицам). Каждая часть сплошной среды прилагает силы к ее соседним частям, действуя на разделяющих их поверхностях. (Эти поверхности вводятся как воображаемые объекты и не обязаны быть реальными границами.) Давление определяется в таких случаях как сила, действующая на единичную площадь.
Фарадей разработал альтернативный взгляд, согласно которому электрические и магнитные силы передаются как давление посредством заполняющих пространство флюидов. Максвелл развил интуитивные догадки Фарадея математически и таким образом пришел к флюидной или, иначе, полевой теории электромагнетизма, которой мы пользуемся по сей день.
Астрология постулирует мощное дальнодействие, но, мягко выражаясь, нет никаких достоверных свидетельств ее правомерности.
На интуитивном уровне
Длины могут быть разделены на очень маленькие кусочки. Поскольку не существует
Ньютон был чрезвычайно впечатлен бесконечными десятичными дробями, которые в его время были свежим изобретением. Они послужили прямым источником вдохновения для его работ с бесконечными рядами и в исчислении бесконечно малых величин:
Меня удивляет поэтому, что никто… не направил своего внимания на приложение к буквам принципов недавно открытого учения о десятичных дробях, особенно потому, что при этом открывается путь к более трудным и более важным открытиям. В самом деле, это учение о буквенных выражениях находится в таком же отношении к алгебре, как учение о десятичных дробях к обычной арифметике, и кто учитывает аналогию, существующую между десятичными числами и бесконечно продолжающимися алгебраическими выражениями, сможет тогда легко изучить сложение, вычитание, деление, умножение и извлечение корней[98]
.Другими словами, Ньютон считал своим основным нововведением то, что он решился использовать вместо конкретных чисел неизвестное
«Десятичные числа, которые продолжаются бесконечно» – отличное описание действительных чисел, и оно соответствует тому, как большинство математиков и по существу все физики обычно думают о них. Но это не строгое
определение. Проблема создания точного определения состоит в том, чтобы зафиксировать главную идею о том, что нечто «продолжается бесконечно», используя предложения, которые бесконечно не продолжаются. На самом деле довольно трудно дать строгое определение действительных чисел. Это удалось сделать только в конце XIX в., хотя люди использовали действительные числа в течение сотен лет до того.В современной физике благодаря открытию атомов и странностям квантовой теории
корректность гипотезы о том, что не существует предела для деления отрезка, совсем не очевидна. Однако действительные числа продолжают обеспечивать интеллектуальный материал, из которого отчеканены наши Главные теории. Почему? Это кажется очень странным, по крайней мере мне. (См., чтобы узнать об этом, Бесконечно малые.)