Основные ингредиенты квантовой хромодинамики
(КХД), нашей теории сильного взаимодействия, – это кварки и глюоны. Есть огромное количество доказательств (частично описанных в главе «Квантовая красота III») того, что эта теория верна. Но ни кварки, ни глюоны не наблюдаются в виде отдельных частиц. Они обнаруживаются только как составные части более сложных объектов – адронов. Описывая эту ситуацию, мы говорим оМы можем представить себе попытку освободить («вырвать») кварк из протона либо постепенно, разделяя протон на части пинцетом, либо облучая протон частицами с высокой энергией и разбивая его (протон) таким образом на составные части. Каждая из этих попыток проваливается интересным – и я бы сказал,
Если мы будем делать это медленно, мы обнаружим, что существует непреодолимая сила
, которая тянет кварк обратно внутрь.Если мы сделаем это быстро, мы получим струи
.Чтобы узнать об этом больше, см. «Квантовая красота III», особенно вторую часть.
Когда мы используем наборы чисел для задания точек в пространстве, мы называем эти числа
Введение координат связывает понятия счета и количества, которые относятся к работе левого полушария мозга, с понятиями формы и очертаний, которые обрабатываются в правом полушарии. Хотя лежащая в основе этого психология туманна в деталях, нет сомнений, что метод координат помогает разнообразным модулям нашего мозга общаться друг с другом и объединять усилия.
Самый простой, самый базовый пример использования координат – описание прямой с использованием действительных чисел
. Чтобы сделать это, нам нужно выполнить три шага:• Выбрать точку на прямой. (Подойдет любая точка.) Эта выбранная точка будет называться началом координат.
• Выбрать длину. (Можно использовать метры, сантиметры, дюймы, футы, версты, световые годы и т. д.) Эта выбранная длина называется единицей длины. Для определенности выберем метры.
• Выбрать направление на прямой. (Есть всего две возможности.) Это выбранное направление называется положительным направлением.
А теперь, чтобы определить координату точки
Таким способом мы устанавливаем точное соответствие между действительными числами и точками на прямой: каждая точка имеет единственную действительную координату и каждое действительное число – координата единственной точки.
Похожим образом мы можем задать точки на плоскости, используя пары действительных чисел, или точки в модели трехмерного пространства, используя тройки действительных чисел. Мы называем эти числа
Конечно, если у нас есть только отрезок прямой, мы все равно можем использовать действительные числа, чтобы задать его точки, но не все действительные числа будут на нем представлены, аналогично и для других случаев.
Опыт построения карт демонстрирует нам, как с помощью подходящей проекции
мы можем представить кривые поверхности на плоскости (например, на плоском листе бумаги). Таким образом мы можем использовать координаты для задания точек на искривленных поверхностях.Базовая идея координат допускает многие вариации и обобщения:
• Мы можем использовать больше чисел! Хотя нам сложно представить больше трех измерений, работать с пятерками или еще большими наборами действительных чисел не сильно сложнее, чем работать с тройками. Таким образом, пространства более высокой размерности оказываются поддающимися осмыслению. См. Измерение
.