Кажется вполне естественным задать вопрос, не можем ли мы выйти за пределы обнаруженного нами (или, скорее, Евклидом) ограничения, в соответствии с которым возможно лишь пять платоновых тел, рассматривая платоновы поверхности более общим способом. Вспомним, мы говорили, что в одной вершине не может сходиться более шести треугольников, потому что тогда сумма их углов составит больше 360°, а это больше того пространства, которое имеется в одной вершине. С шестью треугольниками мы получаем плоскость как платонову поверхность.
С тремя, четырьмя или пятью треугольниками мы, делая проекцию из центра нашей платоновой поверхности на описанную сферу, получаем правильные сечения сферы. Это возможно, потому что равносторонние сферические треугольники имеют углы больше 60°, поэтому мы можем окружить вершину менее чем шестью из них. Это другой способ представления обоих классов платоновых тел – как правильные сечения плоскостей или сфер.
Таким образом, мы пришли к тому, чтобы спросить более конкретно: можем мы представить себе другой вид поверхности, где углы будут меньше? Тогда мы, возможно, придумаем платоновы поверхности, где в одной вершине сходятся более шести треугольников.
Мы действительно можем это сделать! Что нам нужно, так это поверхность, которая получается в результате деформации плоскости таким образом, чтобы она изогнулась наружу, а не внутрь – так, как мы делаем, чтобы получить сферу. Седловидная форма дает необходимый эффект. На ней мы можем представить себе правильные сечения, основанные на вершинах с семью треугольниками или даже с большим их количеством (вообще говоря, произвольным). Если говорить более точно, математическая фигура, известная как трохоида, дает правильную седловидную форму, позволяющую сохранить все в симметрии, чтобы каждая вершина и каждый треугольник (или другая фигура) выглядели бы одинаково.
Древние геометры знали о геометрии более чем достаточно, чтобы выполнить все необходимые построения. Дальнейшее следование ходу этой мысли могло привести умных людей, живших на рубеже нашей эры, к понятиям неевклидовой геометрии XIX в. и к тем видам графического дизайна, которые сделал популярным М. Эшер в XX в. К сожалению, этого не случилось.
Существуют разногласия по поводу того, являются ли ашмолинские и другие подобные камни действительно платоновыми телами. См. math.ucr.edu/home/baez/icosahedron.
Ньютон III: Динамическая красота
Герман Вейль – один из моих героев. Я вырос на его книгах и даже сейчас часто к ним возвращаюсь. Поскольку он умер, когда я был маленьким ребенком, мне не довелось встретиться с ним лично. Но его прекрасные строки, которые приведены в тексте, открыли нам возможность сотрудничать, которую я продолжаю здесь. Вейль всегда сражал меня своей поэтичностью, и мне пришло в голову: почему бы не сделать следующий шаг и не написать стихотворение?
Вот это стихотворение. Первая его строка одновременно является заглавием.
Максвелл I: Эстетика Бога
Веб-сайт maxwells-equations.com обеспечивает всестороннее начальное знакомство с уравнениями Максвелла, включая видеокурс. Статья в «Википедии» en.wikipedia.org/wiki/Maxwell%27s_equations
очень хороша. При работе с этой статьей я рекомендую вам начать с раздела «Conceptual Descriptions» («Понятийное описание»), который в основном следует той же линии, что наша книга, и разрабатывается дальше. Также существует прекрасный и понятный маленький видеоролик о картине полей электромагнитной волны, идущей сквозь пространство. Я очень его рекомендую: en.wikipedia.org/wiki/Maxwell%27s_equations#/media/File: Electromagneticwave3D.gif.Максвелл II: Двери восприятия