Мы можем понять разницу, сравнив модель Солнечной системы Кеплера, основанную на платоновых телах, с Системой мира Ньютона. В модели Кеплера Солнечная система сама по себе – красивый объект, воплощающий идеальную симметрию. Ее элементами являются сферы, разделенные пятью идеальными платоновыми телами. В Системе Ньютона реальные орбиты планет отражают первоначальный замысел Господа, возможно, слегка искаженный временем. (Подробнее об этом ниже.) Бог мог иметь и, возможно, имел в виду другие соображения, а вовсе не математическую мистику, поэтому от реальных орбит красоты никто не ждет и не находит ее. Красивы не орбиты сами по себе, а общие принципы, которые лежат в основе всех возможных орбит, и вся совокупность орбит. Это красота Горы Ньютона, усиленная ее тщательной проработкой.
Упрощение способствует росту
Ньютоновский метод анализа и синтеза имеет и другое название – редукционизм (упрощение). При этом сложный объект или предмет «упрощается» до чего-то более простого, если было показано или считается оправданным, что более сложные объекты можно анализировать через их составные части, а затем синтезировать их поведение из поведения этих частей.
Редукционизм имеет дурную славу, и не только потому, что «редукционизм» – так себе словечко. Самое очевидное значение этого слова наводит на мысль, что, когда вы что-то поняли с помощью метода анализа и синтеза, вы каким-то образом упростили его. Ваш насыщенный и сложный объект теперь «не более чем» сумма его частей. Если уж на то пошло – и здесь, когда дело близко касается человека, это начинает раздражать, – возможно, что и вы сами, и те, кого вы любите, являются «не более чем» собранием молекул, просто делающих свое дело и ведущих себя в соответствии с математическими правилами.
Поэты и художники романтической эпохи в ответ на триумф ньютоновской «редукционистской» науки выражали свое волнение по поводу присущего ей мотива «не более чем». Джон Китс, самый лирический из всех лирических поэтов, писал:
Уильям Блейк протестовал против ограниченного кругозора редукционизма (цветная вклейка K). На этой картине изображен Исаак Ньютон за работой и отражаются противоречивые чувства Блейка по его поводу. Его Ньютон – это фигура, преисполненная чрезвычайной сосредоточенности и целеустремленности, не говоря уже о сверхчеловеческом строении тела. В то же время он изображен с потупленным взором, потерянный в абстракциях и буквально повернутый спиной к необычному красочному пейзажу. Тем не менее Блейк (как и Китс) признавал, что миром правит математический порядок (вклейка L). В сложной мифологии Блейка изображенный здесь Уризен[32]
– это двойственная фигура Отца, который одновременно несет жизнь и ограничивает ее. Трудно не заметить некоторое сходство с предыдущей картиной. Не является ли Ньютон толкователем Уризена или его реинкарнацией?Хорошая картина действеннее вызывает эмоциональный отклик, чем назидательные разглагольствования. Перед нами в самом деле «картина, стоящая тысячи слов». Пожалуйста, на секунду не обращайте внимания на подпись, когда вы откроете вклейку М, а просто рассмотрите поразительно красивый шедевр абстрактного искусства.
Хорошо, а теперь прочтите подпись (если вы этого еще не сделали). Разве знание того, что эта картина может быть «редуцирована» до чистой математики, умаляет ее красоту? Для меня и, надеюсь, для вас открытие того, что простая математика может закодировать эту структуру, только
И наоборот, красота картины увеличивает красоту математических построений. Прослеживать логику создания программы, не видя, что можно получить, – это не очень увлекательное упражнение. Когда вы видите, что должно получиться на выходе, тот же самый процесс становится интеллектуальной загадкой, позволяющей достичь совершенства.
Реальное более стремится быть Идеальным, а Идеальное – Реальным.
Что касается этого фрактального изображения, то – более обобщенно – понимание не принижает опыт, скорее оно добавляет альтернативные точки зрения. В духе дополнительности мы можем наслаждаться любой из альтернатив по очереди, если не можем наслаждаться сразу всеми.
Кстати, могу побиться об заклад, что Китс не одолел научную теорию радуги. Если бы он справился с ней, мы бы прочитали стихи, воспевающие ее красоту. Потому что Джон Китс также написал эти строки: