•
•
Чтобы точно сформулировать закон Фарадея, рассмотрим кривую, которая образует границу поверхности. Закон Фарадея утверждает равенство циркуляции электрического поля по этому контуру (с отрицательным знаком) скорости изменения магнитного потока через поверхность. Циркуляцию, как и поток, проще всего понять через ассоциацию с полем скоростей в течении жидкости. Мысленно расширим нашу кривую, превратив ее в узкую трубку, и рассчитаем количество жидкости, проходящей по этой трубке в единицу времени. Это и будет циркуляция потока жидкости. Если мы проведем над электрическим полем те же математические операции, которые мы провели над полем скоростей жидкости, то получим (по определению) циркуляцию электрического поля.
Наконец, чтобы быть совершенно точными, мы должны разрешить неоднозначность с направлением: определяя циркуляцию, в каком направлении мы должны двигаться вокруг кривой? Определяя поток, в каком направлении мы должны двигаться сквозь поверхность? Чтобы получить определенное соотношение, мы должны установить соответствие между существующими вариантами выбора. Стандартным способом является так называемое правило правой руки: если мы двигаемся по кривой в направлении, указанном четырьмя пальцами правой руки, тогда мы должны считать поток направленным в сторону большого пальца.
•
Чтобы точно сформулировать закон Ампера, рассмотрим кривую, образующую границу поверхности. Закон Ампера утверждает равенство между циркуляцией магнитного поля вдоль кривой и потоком электрического тока сквозь поверхность.
Стоит отметить, что одни и те же понятия потока и циркуляции повторяются в этих законах несколько раз. Поток и циркуляция – это самые основные способы для мысленного восприятия полей. Они заключают в себе соответственно силовые линии, устремляющиеся прочь по прямой и завивающиеся в петли. Их выдающееся положение в физических законах – это дар Материи Уму.
Но когда Максвелл собрал все эти четыре закона вместе, он нашел… противоречие! (Но пятый закон Максвелла исправляет его.) Чтобы увидеть это, обратимся к цветной вклейке О.
Проблема возникает в том случае, если вы пытаетесь применить закон Ампера в ситуации, когда электрический ток прерывается. На иллюстрации на вклейке О показан электрический ток, втекающий в и вытекающий из пары пластин, разделенных промежутком. (Специалисты могут узнать модель конденсатора.) Согласно Амперу, магнитная циркуляция вдоль контура равна потоку тока, проходящему сквозь любую поверхность, которую он ограничивает. Но здесь мы получим различные значения для потока в зависимости от того, какую поверхность возьмем! Если мы берем диск внутри промежутка между пластинами (на иллюстрации он обозначен синим), мы получаем нуль. Если мы возьмем полусферу, которая пересекает провод (на иллюстрации показана желтым), мы получим полный поток.
Ой-й!
Чтобы справиться с этим противоречием, нам нужно что-то новое. Благодаря более ранней работе со своей моделью у Максвелла был готов
•
Диск, поставленный в промежуток между пластинами, не перехватывает поток тока, но он перекрывает изменяющееся электрическое поле. Желтая полусфера дает магнитную циркуляцию в соответствии с законом Ампера, тогда как голубой диск дает магнитную циркуляцию в соответствии с законом Максвелла, но оба они приводят к одному и тому же результату! Тем самым противоречие уходит. После добавления закона Максвелла полная система уравнений Максвелла становится согласованной.
В этом качестве – как приводящий в порядок версию «Динамической теории электродинамического поля» – закон Максвелла приобрел новый статус. Он потерял свои связи с механическими моделями, вихревыми атомами и смазкой из перекатывающихся сфер. Теперь мы видим, что он был логически необходим для согласования всех остальных законов, которые были выведены из экспериментов.
Вознесение Максвелла