Физика музыкальных инструментов есть физика
Стоячие волны – это вид движения, который вы создаете в налитой в ванну воду, когда шлепаете по ней или который наблюдается в колебаниях гонга или камертона после того, как их задели. В каждом из этих случаев – в шлепке по воде в ванне, ударе по гонгу или камертону – после шумного старта движение будет стабилизироваться, пока не станет регулярным в пространстве и периодическим по времени. В этом состоит суть камертона: он «хочет» вибрировать с определенной частотой и, таким образом, производит верный чистый звук. Обычный гонг производит более сложную и интересную комбинацию звуковых тонов. Мы скоро вернемся к этому вопросу.
Мы можем осветить йогу музыкальных инструментов более ясно, рассмотрев предельно простой инструмент, который на самом деле является пифагоровым, – туго натянутую струну, зажатую с двух концов (илл. 24). В простой одномерной геометрии отрезка конечной длины мы можем с первого взгляда отыскать естественный образец стоячей волны.
На иллюстрации сплошные и пунктирные линии показывают форму струны в различные моменты времени, демонстрируя четыре различных состояния стоячей волны (амплитуда, т. е. размер отклонения струны от средней линии, на иллюстрации сильно преувеличена, чтобы можно было ясно видеть саму волну). В промежуточные моменты точки на струне перемещаются вверх и вниз; составленная из них сплошная линия последовательно переходит в пунктирную, и наоборот, циклически.
Простые требования геометрии привносят целые числа и дискретность в описание этих непрерывных по сути фигур. Последние должны умещаться на длине струны! Идя сверху вниз и сравнивая картины, мы видим, что темпы изменений при движении вдоль струны слева направо отличаются по скорости в два, три, четыре раза.
Можно получить естественные колебания, которые соответствуют трем циклам, или двум, или четырем, или любому целому числу, но ничего между целыми числами быть
Илл. 24. В простой одномерной геометрии отрезков конечной длины мы можем с первого взгляда отыскать естественные образцы стоячей волны. Они должны умещаться на длине отрезка! Эти простые геометрические правила требуют целых чисел и дискретности в описании поведения непрерывного объекта.
В отличие от ставшей притчей во языцех сферической коровы[55]
, наш пифагоров музыкальный инструмент не так оторван от реальности. Куда важнее, что урок, который мы извлекли из этого простого инструмента, – о том, чтоЕстественные колебания и резонансные частоты
Вы также можете получить стоячие волны деки гитары, когда дергаете ее струну, или квадратной пластины, когда ударяете по ней (илл. 25), причем волны можно сделать видимыми. Основная идея остается той же, что и та, которую мы обсуждали в случае с закрепленной струной. Стоячая волна – это движение вверх-вниз, которое в одних местах выше (или, на нашем жаргоне, имеет большую амплитуду), чем в других. Существуют линии, вдоль которых отклонение исчезает и движение отсутствует. Точки этих линий называются узлами, а сами линии – узловыми линиями. Если вы насыплете на пластину немного песка, то он соберется вдоль узловых линий – именно это вы видите на рисунке.
Для этих двумерных вибраторов[56]
геометрия оказывается сложнее, чем для одной струны. Это отражается в формах собственных колебаний, которые становятся более сложными.