Что касается нашего второго парадокса, парадокса существования стабильных неизменных атомов, Нильс Бор предложил идею о том, что атомы могут пребывать только в
Гипотеза стационарного состояния Бора также не была частью большой системы. На самом деле она тоже противоречила тому, что казалось очевидным следствием очень успешной теории, а именно – механики Ньютона. Кем был Бор, чтобы указывать электронам, где они могут, а где не могут быть или какие скорости они могут или не могут иметь? Это был скандал! Гипотеза объясняла некоторые факты, но ценой подрыва существующих и очень успешных основных принципов, которые объясняли многие другие явления.
Правило Бора для водорода могло быть и было проверено экспериментами. Их успех сделал его скандальную гипотезу достойной доверия.
И Эйнштейн, и Бор очень хорошо понимали, что они делают и чего
Важная часть хорошей научной стратегии – это деление проблемных областей на те, из которых может вырасти большое обобщение, и на те, где более плодотворным будет конъюнктурный подход. Успешная теория
«Высшая форма музыкальности»
Атомы определенного вида – например, атомы водорода – поглощают одни цвета спектрального света более эффективно, чем другие. (Если говорить более обобщенно, они будут поглощать электромагнитные волны некоторых частот гораздо более эффективно, чем другие.) Те же самые атомы, если их «подогреть», будут испускать большую часть своего излучения в тех же самых спектральных цветах. Набор приоритетных цветов различен для атомов различных видов и формирует что-то вроде отпечатков пальцев, по которому мы можем распознать их. Набор приоритетных цветов атома называется его
В своей атомной модели Бор допустил, что электроны в атомах могут существовать только в дискретном наборе стационарных состояний. Таким образом, возможные значения энергии электронов также формируют дискретный набор. И вот как Бор связал свою идею с реальностью через еще одну скандальную гипотезу. Он предположил, что вдобавок к своим «разрешенным» регулярным движениям в стационарных состояниях электрон иногда совершает квантовый скачок между одним стационарным состоянием и другим. Почему? Как? Не спрашивайте… Важно, что процесс квантового скачка сопровождается излучением или поглощением фотона. Квантовые скачки создают атомные спектры.
В этой иконоборческой во всех других отношениях модели Бор не тронул один священный принцип – сохранение энергии. Он настаивал на том, что энергия должна сохраняться даже в процессе квантового скачка.
Итак, энергия фотона по Эйнштейну пропорциональна его частоте, а частота закодирована в цвете. А значит, идеи Бора образуют конструкцию с предсказательной силой: цвета спектра атома отражают его способности к переходу между стационарными состояниями, при этом указывая на величину разностей между энергиями стационарных состояний. Модель Бора, предсказывая эти энергии, предсказала цвета в спектре водорода. И это сработало!
Эйнштейн, размышляя о работе Бора, писал:
Мне всегда казалось чудом, что этой колеблющейся и полной противоречий основы оказалось достаточно, чтобы позволить Бору – человеку с гениальной интуицией и тонким чутьем – найти главные законы спектральных линий и электронных оболочек атомов… Это мне кажется чудом и теперь. Это наивысшая музыкальность в области мысли[60]
.