Читаем Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры полностью

«Новость, достойная газетной статьи, — заявил Пол, вынимая из кармана черную записную книжку и разворачивая истрепанный лист бумаги. — Я ношу это с собой повсюду». Игру «Жизнь» изобрел сорок лет назад молодой преподаватель Кембриджского университета Джон Конвей, разработавший законы вымышленной вселенной, согласно которым конфигурации клеток квадратной решетки эволюционируют и мутируют самыми завораживающими и непредсказуемыми способами. Сейчас в этой вселенной существуют такие фигуры, как «фитили», «ружья», «паровозы» и «космические корабли». На листике Пола было изображение космического корабля «Джемини», состоящего почти из миллиона крохотных клеток и представляющего собой одну из самых крупных и сложных фигур, когда-либо построенных в игре «Жизнь». «Джемини» напоминал ромбовидный алмаз, образованный из нескольких «елочных» шаблонов. Пол нетерпеливо показывал на разные фрагменты этого корабля, объясняя, почему он такой особенный. «Джемини» — это первая самовоспроизводящаяся фигура, которая способна построить свою точную копию. Этот космический корабль живой. В конце концов жизнь породила жизнь. «Это удивительно, — воскликнул Пол. — За сорок лет мы еще не видели ничего подобного».

Мысль о том, что математическая квадратная решетка позволяет создать конфигурацию, достойную серьезных размышлений, восходит как минимум к так называемому решету Эратосфена, названному так по имени древнегреческого ученого-энциклопедиста, который, как мы с вами знаем, сделал первую достаточно точную оценку размеров Земли. Решето Эратосфена — это алгоритм поиска простых чисел. Мы начинаем отсчет по возрастанию с 1 и, достигнув первого подходящего числа, удаляем из списка все числа, кратные данному числу. (Этот метод очень похож на подход Джерри Ньюпорта, человека с синдромом гения, о котором шла речь в главе 1.) Первое простое число — 2, поэтому мы должны вычеркнуть из списка все четные числа. Второе простое число — 3, поэтому нам необходимо вычеркнуть все числа, кратные трем. Число четыре уже было вычеркнуто, поскольку оно четное, а значит, следующее простое число — 5 и т. д.

Решето Эратосфена для чисел от 1 до 100 можно представить в виде сетки с шестью рядами, как показано на рисунке ниже. Горизонтальные линии, проведенные по ряду после числа 2, а также по рядам, начинающимся с чисел 4 и 6, вычеркивают все четные числа, а линия после числа 3 — числа, кратные 3. Два набора диагональных линий вычеркивают числа, кратные 5 и 7. Больше никаких линий не нужно, поскольку, если в поисках простых чисел вы просматриваете список до числа n, вам нужно искать числа, кратные простым числам, которые не превосходят значения √n[176]. В данном случае n = 100, поэтому мы можем прекратить поиск чисел, кратных простым, как только доберемся до числа 10.

Решето Эратосфена

Это очень красивая и наглядная решетка, так как она сразу же говорит вам, что все простые числа должны находиться в первом и пятом рядах, а значит, они все либо на единицу больше, либо на единицу меньше числа, кратного 6. Однако самый важный момент, на который необходимо обратить внимание, — это причина, вынуждающая нас отсеивать числа: простые числа не появляются в каком-либо предсказуемом порядке. Если бы мы продолжили строить эту решетку до бесконечности, они были бы разбросаны в случайном порядке по первому и пятому рядам. Тот факт, что простые числа настолько легко найти, но их распределение столь непредсказуемо, — одна из самых ранних и наиболее непостижимых неожиданностей в математике.

В 1963 году 54-летний Станислав Улам отвлекся от лекции, на которой присутствовал, и принялся машинально чертить что-то на листе бумаги. Он нарисовал сетку из горизонтальных и вертикальных линий и стал нумеровать образованные путем их пересечения клетки, начав с единицы в центре и двигаясь по спирали. Наверное, ему было действительно скучно, потому что после этого он отметил все простые числа кружочками. Мы знаем, что простые числа не подчиняются очевидной закономерности, так что такого там увидел Улам? Как ни странно, он заметил нечто весьма неожиданное. Простые числа выстраивались вдоль диагональных линий (см. рисунок ниже), создавая рисунок, известный сегодня как спираль Улама. Когда Улам запрограммировал компьютер на построение такой спирали от 1 до 65 000, там тоже образовались диагонали, а также горизонтальные и вертикальные теневые области. Спираль Улама позволяет сделать волнующее предположение о том, что за беспорядочным шумом можно обнаружить музыку.

Перейти на страницу:

Похожие книги

Загадки, фокусы и развлечения
Загадки, фокусы и развлечения

Вашему вниманию предлагается очередная, четвертая, книга популярного российского ученого и педагога Я. И. Перельмана. Она составлена из двух малоизвестных сейчас произведений 20-х годов прошлого века: «Фокусы и развлечения» и «Ящик загадок и фокусов».Автор предстает перед нами в необычном качестве – мага и чародея. Он дает возможность своему читателю увидеть удивительные фокусы, раскрывая затем их математических секреты. Пораженный читатель видит необычайные и «чудесные» вещи, которые, как потом оказывается, основаны на простых арифметических расчетах.Я. И. Перельман собрал интересные опыты и изумляющие окружающих фокусы, для проделывания которых потребуются самые обыденные предметы, всегда находящиеся под рукой. Все это непременно вызовет интерес ваш и вашего ребенка к точным наукам и скрасит ваш досуг.Фокусы эти «честные и добросовестные», и, проявив сообразительность и умение рассуждать, их сможет проделать каждый. Вы узнаете нечто такое, о чем другие даже не догадываются. А показывая их своим друзьям и знакомым, вы сможете творить чудеса, как профессиональный фокусник. Вы поразите воображение своих зрителей, на их глазах превратившись в математического гения.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют первой половине XX века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Игры, упражнения для детей / Математика / Книги Для Детей / Дом и досуг