Читаем Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры полностью

Я рассказал о гиперболе в последнюю очередь, хотя это именно то коническое сечение, с которым мы уже встречались. Когда две величины обратно пропорциональны друг другу, как было с частотностью употребления слов в романе Джеймса Джойса «Улисс» и их порядковым номером в списке, их математическую зависимость можно представить в таком виде: , где k — это константа. Данное уравнение описывает гиперболу, в которой в качестве асимптот выступают горизонтальная и вертикальная оси. Многие законы природы включают в себя обратно пропорциональные величины — например закон Бойля — Мариотта, который гласит, что давление газа обратно пропорционально его объему. Следовательно, гиперболы широко распространены в науке. Даже такой общеизвестный статистический термин, как «длинный хвост», используется во многих случаях как эвфемизм для замещения гиперболы и ее асимптоты.

Кривая— это гипербола

Мы начали эту главу с определения конических сечений как фигур, образующихся в результате рассечения конуса секущей плоскостью, а затем проанализировали свойства каждой фигуры в отдельности. А завершим последним, всеобъемлющим определением: конические сечения — это кривые, для которых отношение расстояний до точки (фокуса) и до прямой (директрисы) представляет собой постоянную величину. Если отношение расстояния от кривой до точки к расстоянию от кривой до прямой линии больше 1 (а это значит, что кривая всегда пропорционально ближе к директрисе, чем к фокусу), мы имеем гиперболу, как показано на рисунке ниже. Когда это соотношение равно 1 — параболу, а когда оно меньше 1 — речь идет об эллипсе. Данные соотношения известны как эксцентриситеты каждой кривой, поскольку они показывают степень их отклонения от окружности. На представленном ниже рисунке изображены три кривые с общим фокусом F и общей директрисой. Эксцентриситет эллипса составляет 0,75, гиперболы — 1,25.

Гипербола A1/A2=k> 1

Парабола B1/B2= 1

Эллипс C1/C2=k< 1

Окружность Эксцентриситет=0

Конические сечения: семейство эксцентриков

А теперь представьте, что вы — астроном, а размещенный выше рисунок — модель Солнечной системы. Пусть F — это Солнце. Конические сечения с фокусом в точке F и есть совокупность всех возможных орбит небесных тел.

Планеты вращаются вокруг Солнца по эллипсам: у орбиты Земли эксцентриситет 0,0167, что очень близко к окружности. Чем быстрее объект перемещается по своей орбите, тем больше ее эксцентриситет. Например, орбитальная скорость кометы Галлея в два раза больше орбитальной скорости Земли. Орбита кометы напоминает доску для серфинга, на одном конце которой находится Солнце; именно поэтому на протяжении всех 75 лет, требующихся комете Галлея для прохождения орбиты, она находится слишком далеко, чтобы увидеть ее невооруженным глазом. Эксцентриситет орбиты кометы Галлея — 0,967, что близко к параболе. Когда эксцентриситет орбиты кометы равен 1, она представляет собой параболу, а это значит, что комета пройдет рядом с Солнцем только один раз за время своего существования, после чего покинет Солнечную систему навсегда. Если эксцентриситет орбиты кометы больше 1, эта орбита является гиперболой. Однако такие кометы — крайне редкие явления, а орбитальная скорость тех, которые обнаружены, незначительно превышает скорость, необходимую для того, чтобы отклониться от эллиптической орбиты. Комета C/1980 E1, замеченная в 1980 году, перемещается по орбите с эксцентриситетом 1,057 — это самый большой эксцентриситет из всех когда-либо зарегистрированных.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное