Читаем Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры полностью

Представьте, что директриса и фокус F на рисунке зафиксированы. Посмотрим, что произойдет с коническими сечениями в случае изменения эксцентриситета. Когда он равен нулю, кривая представляет собой окружность с центром в фокусе F. Теперь медленно увеличим эксцентриситет от 0 до 1. Появляется эллипс, который становится все больше и больше. Поскольку точка F зафиксирована, другой фокус, обозначенный как f, начнет медленно смещаться вправо по мере увеличения эллипса. Как только эксцентриситет достигнет значения 1, эллипс превратится в параболу, а точка f станет бесконечно удаленной. Если сделать эксцентриситет больше 1, кривая превратится в гиперболу, а в левой части рисунка появится второй фокус f. По мере дальнейшего роста эксцентриситета все полученные кривые будут гиперболами, а фокус f будет смещаться все дальше вправо. В своем труде The Optical Part of Astronomy («Оптика в астрономии») Иоганн Кеплер впервые высказал идею о том, что конические сечения могут превращаться друг в друга так, как это показано выше. Подобно многим другим идеям Кеплера, эта имела переломное значение, поскольку позволила по-новому взглянуть на две концепции, над которыми веками бились философы: непрерывность и бесконечность. Это был важный шаг на пути к новому способу выполнения математических вычислений. Мы вернемся к великому немцу и его пониманию данных концепций чуть позже, при обсуждении исчислений бесконечно малых величин.

Конические сечения — одно из величайших наследий древнегреческой математики: простые в описании, поддающиеся наблюдению повсюду, они положены в основу прекрасных теорий и нашли неподвластное времени применение во многих областях. Возможно, у вас создалось впечатление, что окружность — наименее интересная разновидность эллипса. Но это далеко не так. Окружность сама по себе заслуживает отдельной главы.

<p><strong>5. Движение по замкнутому кругу</strong></p>

Автор исследует вращение: крутит колесо, качает маятник, приводит в движение пружину и ударяет по камертону

Окружность, простейшая из всех двумерных фигур, представляет собой геометрическое место точек, равноудаленных от центра. Она — воплощение геометрического совершенства: сглаженная со всех сторон, гармоничная и симметричная. Однако если мы разделим расстояние вокруг окружности (длину окружности) на расстояние поперек окружности (длину диаметра), то получим нечто поразительное:

3,141592653589793238462643383279502884197169399375105820974944592307816406286208…

Это число, равное отношению длины окружности к ее диаметру, является постоянной величиной для всех окружностей, а его десятичные цифры образуют бесконечный ряд без какой-либо закономерности. В XIX веке это число получило собственное имя — «пи», а также символ — π и стало межкультурной иконой, самой знаменитой константой в науке и метафорой для обозначения непостижимости Вселенной. Все изучают его в школе, а для многих это единственное, что они помнят из математики.

Но вот что я вам скажу.

Пи — неправильное число.

Безусловно, оно рассчитано верно. Очевидно, что отношение длины окружности к длине ее диаметра — это и есть представленное выше число, которое начинается с 3,14. Пи — неправильное число потому, что оно совершенно не подходит для описания окружности. Пи — это самозванец, ложный идол, не заслуживающий международного признания.

Во всяком случае, так считал американский математик Боб Пале в 2001 году[91]. Он заявил, что куда более подходящей константой для описания окружности было бы отношение длины окружности к радиусу, поскольку радиус, или расстояние от центра окружности до любой ее точки, — гораздо более фундаментальная концепция, чем диаметр. Многие с ним согласны, в том числе и я[92]. Посмотрите на определение окружности. Окружность — это фигура, образованная путем вращения фиксированного отрезка (радиуса) вокруг центра. Диаметр — это производная концепция. Математике свойственно неизменное стремление к элегантности, ясности и корректности, именно поэтому так неуместно то, что самое знаменитое число в математике не отражает истину об окружностях самым понятным, изящным и корректным способом. (В школе нам объясняют, что такое диаметр, исключительно для того, чтобы мы поняли концепцию числа π, однако, усвоив ее, мы больше не возвращаемся к диаметру. Математики считают само собой разумеющимся, что диаметр — это радиус, умноженный на два.)

В 2010 году предприниматель из Кремниевой долины Майкл Хартл усилил настроения против числа π, окрестив отношение длины окружности к радиусу греческой буквой τ («тау»). Тау равно двум пи, поскольку диаметр окружности в два раза больше радиуса. Другими словами, число τ равно:

τ = 2π = 6,283185307179586476925286766…

Как и в случае π, количество десятичных цифр в этом числе бесконечно и не подчиняется ни одной известной закономерности.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное