Читаем Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры полностью

На интуитивном уровне невозможно понять, что означает возвести число (например, число е) в мнимую степень. Однако Эйлер понял, что это можно сделать алгебраическим способом, воспользовавшись представленным выше бесконечным рядом для ex. Например, если мы подставим ix вместо x, получится следующее уравнение:

Убрав скобки, получим такое уравнение:

Мы можем еще больше упростить это уравнение, поскольку по определению i2 = −1:

i3 = i × i × i = i2 × i = –1 × i = —i,

i4 = i2 × i2 = –1 × –1 = 1,

i5 = i4 × i = 1 × i = i,

i6 = –1

И так далее.

Другими словами, вместо членов ряда i2, i4, i6, i8 … мы можем подставить значения −1, 1, −1, 1 …, а вместо i3, i5, i7, i9 … — −i, i, −i, i … Следовательно, уравнение можно записать так:

Закономерность легче увидеть, если выделить мнимые члены жирным шрифтом:

Этот ряд можно преобразовать так:

Но ведь это в точности те же члены, что и в представленных выше уравнениях для косинуса и синуса x:

eix = cos x + i sin x

Возведение числа е в мнимую степень позволило Эйлеру найти тригонометрические функции. Другими словами, он взял две знакомые, но не связанные друг с другом концепции, перемешал их — и как по мановению волшебной палочки появилось нечто неожиданное: две еще более привычные концепции из области, которая считалась совершенно не имеющей отношения к данной ситуации. Занимаясь математикой, порой испытываешь ощущение, будто это алхимия.

В завершение Эйлер сказал: пусть x = π, что в радианной мере эквивалентно 180 градусам. Поскольку cos π = cos 180° = –1, а sin π = sin 180° = 0, мнимый член ряда исчезает.

e = cos π + i sin π

Это сокращается до следующей формулы:

e = –1

Или:

e + 1 = 0

По всей вероятности, именно благодаря революционной работе Эйлера с мнимыми числами они оказались в центре математики, где с тех самых пор и остаются. Но, несмотря на это, для Эйлера и его современников мнимые числа по-прежнему были экзотическими, непостижимыми чудовищами. Само их название, которое подразумевало, что они не существуют, являлось серьезным препятствием, мешавшим их полному принятию. В начале XVIII века Готфрид Лейбниц сказал, что √–1 — это «почти что амфибия между бытием и небытием». Возможно, математика развивалась бы быстрее, если бы вместо термина «мнимые числа» в словарь вошло название «числа-амфибии».

Мы с вами уже знаем, что математики полностью освоились с концепцией отрицательных чисел лишь тогда, когда смогли увидеть их на бумаге в виде точек, отображенных на числовой оси. То же самое произошло и с мнимыми числами. Философские опасения по поводу комплексных чисел исчезли только после изобретения простого способа визуальной интерпретации этой концепции.

Представленная на рисунке ниже комплексная плоскость образована вертикальной числовой осью, на которой откладываются мнимые числа, и горизонтальной числовой осью, на которой откладываются действительные числа (как оси х и у в обычной системе координат). Комплексное число a + bi — это точка на комплексной плоскости с координатами (a, b) — a по горизонтальной оси, b — по вертикальной. На рисунке я отметил число 3 + 2i, другими словами — точку с координатами (3, 2). Комплексная плоскость — достаточно простая идея, но тем не менее все три ее автора независимо друг от друга работали где-то на периферии сообщества самых влиятельных математиков того времени: Каспер Вессель, землемер из Копенгагена; Жан Робер Арган, счетовод из Парижа, и аббат Эдриан-Кантен Буэ, французский священник, который сбежал от революции и поселился в городе Бат. Тот факт, что ни один из великих математиков той эпохи не предложил идею комплексной плоскости, говорит об их зависимости от доктрины о том, что мнимые числа существуют только в воображении.

Комплексная плоскость

Комплексная плоскость стала блестящим открытием. Она не только представляет собой схему, на которой может быть отмечено местоположение комплексных чисел, но и углубляет наше понимание того, как ведут себя эти числа.

Возьмем какую-либо элементарную сумму, скажем 1 плюс 3 + 2i. Ответ: 4 + 2i.

Или прибавим i к числу 3 + 2i. Ответ: 3 + 3i.

А теперь посмотрите на рисунок ниже. Прибавление 1 к точке 3 + 2i перемещает нас на одну единицу по горизонтальной оси, а прибавление i — на одну единицу вверх по вертикальной.

Чем больше единиц я прибавляю, тем дальше продвигаюсь по горизонтали, а чем больше i — по вертикали. На самом деле сложение комплексного числа a + bi эквивалентно перемещению на a единиц вдоль действительной оси и на b единиц вверх по мнимой оси. Такое геометрическое передвижение обозначается термином «параллельный перенос».

А теперь давайте перейдем к умножению комплексных чисел. Если мы возьмем число 3 + 2i и умножим его на 1, получится то же самое, 3 + 2i. Иначе и быть не может, ведь так всегда происходит с умножением на 1. Но когда мы умножим это число на i, произойдет нечто интересное. Давайте умножим 3 + 2i на i:

(3 + 2i) × i = 3i + 2i2 = 3i — 2 = –2 + 3i

Перейти на страницу:

Похожие книги

Загадки, фокусы и развлечения
Загадки, фокусы и развлечения

Вашему вниманию предлагается очередная, четвертая, книга популярного российского ученого и педагога Я. И. Перельмана. Она составлена из двух малоизвестных сейчас произведений 20-х годов прошлого века: «Фокусы и развлечения» и «Ящик загадок и фокусов».Автор предстает перед нами в необычном качестве – мага и чародея. Он дает возможность своему читателю увидеть удивительные фокусы, раскрывая затем их математических секреты. Пораженный читатель видит необычайные и «чудесные» вещи, которые, как потом оказывается, основаны на простых арифметических расчетах.Я. И. Перельман собрал интересные опыты и изумляющие окружающих фокусы, для проделывания которых потребуются самые обыденные предметы, всегда находящиеся под рукой. Все это непременно вызовет интерес ваш и вашего ребенка к точным наукам и скрасит ваш досуг.Фокусы эти «честные и добросовестные», и, проявив сообразительность и умение рассуждать, их сможет проделать каждый. Вы узнаете нечто такое, о чем другие даже не догадываются. А показывая их своим друзьям и знакомым, вы сможете творить чудеса, как профессиональный фокусник. Вы поразите воображение своих зрителей, на их глазах превратившись в математического гения.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют первой половине XX века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Игры, упражнения для детей / Математика / Книги Для Детей / Дом и досуг