Читаем Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры полностью

Теперь давайте рассмотрим точку на комплексной плоскости с координатами (–1, 0), которая представляет комплексное число –1 + 0i, или просто −1. Как показано на рисунке ниже, эта точка находится на расстоянии в 1 единицу от начала координат под углом в π радиан, а значит, мы можем записать ее как e.

Мы с вами заново открыли тождество Эйлера! Формула, описывающая позицию точки −1 на комплексной плоскости, выглядит следующим образом:

— 1 = e

Это уравнение можно преобразовать в такую форму:

e + 1 = 0

Кроме того, поскольку точка i расположена на расстоянии в 1 единицу от начала координат под углом π/2 радиан к горизонтали, мы можем сделать вывод, что i = eiπ/2, а так как −i находится на расстоянии в 1 единицу от начала координат под углом 3π/2 радиан, напрашивается вывод, что −i = e3iπ/2.

Сделайте глубокий вдох. Сейчас мы используем эту информацию, чтобы ответить на потрясающий вопрос, который еще несколько страниц назад мог бы показаться полным бредом, граничащим с безумием: что представляет собой ii, или квадратный корень из минус единицы в степени квадратный корень из минус единицы?

Поскольку мы знаем, что eiπ/2 = i, мы знаем также, что:

Здесь i исчезает, оставляя после себя такое число, которое поняли бы даже древние греки. Только представьте себе!

Комплексная плоскость позволяет забыть беспокойную мысль о том, что i — это квадратный корень из отрицательного числа. Мы должны помнить только то, что комплексное число a + bi представляет собой точку на плоскости с координатами (a, b), где a и b — действительные числа, а также что сложение или умножение этих координат подчиняется определенным правилам. (Разумеется, эти правила основаны на свойствах квадратного корня из минус единицы, но сейчас нас должно интересовать не то, как они появились, а в чем их суть.) Вскоре математики задумались над тем, можно ли создать такие же правила для трехмерной системы координат, что позволило бы описывать вращения в пространстве подобно тому, как правила для комплексных чисел описывают вращения в двумерной системе координат. Больше всех проникся этой идеей ирландский математик Уильям Роуэн Гамильтон, но ему не удавалось найти ответ. И вот однажды в 1843 году, когда Гамильтон прогуливался с женой вдоль Королевского канала в Дублине, на него снизошло озарение, которое вылилось в знаменитый математический акт вандализма: Гамильтон нацарапал на стене моста Брумбридж такую формулу: i2 = j2 = k2 = ijk = –1. Сейчас на этом месте установлена памятная табличка.

Гамильтон понял, что невозможно найти математически допустимые правила для координат с тремя числами, но их можно применить для четырех чисел. Он назвал свое открытие «кватернионы». Подобно тому как комплексное число a + bi (где a и b — действительные числа, а i — √−1) можно представить в виде точки на плоскости с координатами (a, b), кватернион a + bi + cj + dk, где a, b, c и d — действительные числа, а i, j и k равны √–1, можно записать с помощью координат (a, b, c, d). Хотя каждая из мнимых единиц i, j и k равна √–1, все же они разные, как следует из уравнения, записанного Гамильтоном на кирпичной кладке моста. Для того чтобы кватернионы работали, Гамильтону понадобилось еще одно странное правило, которое гласит, что порядок умножения мнимых единиц имеет значение. Например, i × j = k, но j × i = —k.

Кватернионы Гамильтона представляли собой весьма необычную концепцию, но все же позволили ему создать модель вращений в трехмерном пространстве. В кватернионе (a, b, c, d) числа (b, c, d) — это три координаты для трех размерностей пространства, тогда как число а отображает время. Эти новые числа так взволновали Гамильтона, что он посвятил их изучению большую часть оставшейся жизни.

Перейти на страницу:

Похожие книги

Загадки, фокусы и развлечения
Загадки, фокусы и развлечения

Вашему вниманию предлагается очередная, четвертая, книга популярного российского ученого и педагога Я. И. Перельмана. Она составлена из двух малоизвестных сейчас произведений 20-х годов прошлого века: «Фокусы и развлечения» и «Ящик загадок и фокусов».Автор предстает перед нами в необычном качестве – мага и чародея. Он дает возможность своему читателю увидеть удивительные фокусы, раскрывая затем их математических секреты. Пораженный читатель видит необычайные и «чудесные» вещи, которые, как потом оказывается, основаны на простых арифметических расчетах.Я. И. Перельман собрал интересные опыты и изумляющие окружающих фокусы, для проделывания которых потребуются самые обыденные предметы, всегда находящиеся под рукой. Все это непременно вызовет интерес ваш и вашего ребенка к точным наукам и скрасит ваш досуг.Фокусы эти «честные и добросовестные», и, проявив сообразительность и умение рассуждать, их сможет проделать каждый. Вы узнаете нечто такое, о чем другие даже не догадываются. А показывая их своим друзьям и знакомым, вы сможете творить чудеса, как профессиональный фокусник. Вы поразите воображение своих зрителей, на их глазах превратившись в математического гения.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют первой половине XX века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Игры, упражнения для детей / Математика / Книги Для Детей / Дом и досуг