Читаем Красота в квадрате полностью

Назовем числа, которые стремятся к бесконечности, словом «беглецы», а числа, которые не делают этого, — словом «узники». В случае итерации xx2 мы видели, что число 2 — это беглец, а числа 1 и 0,1 — узники. В оставшейся части главы мы будем искать узников любой итерации, которых обозначим как «множество узников». В итерации xx2 множество узников — это числа от −1 до 1; на представленном ниже рисунке они отмечены жирной линией.

Множество узников итерации x → x2

Рассмотрим новую итерацию xx2 + c, где c — исходное значение итерации. Другими словами, наша система с обратной связью поглощает немного больше информации, чем обычно. Она начинает с числа c, возводит его в квадрат и прибавляет c, возводит результат в квадрат и прибавляет c, возводит результат в квадрат и прибавляет c и т. д. Это небольшое изменение правил влечет за собой серьезные последствия в плане определения того, какие исходные значения относятся к узникам, а какие — к беглецам.

Начнем с числа 1, которое, как мы выдели выше, является узником в итерации xx2. В случае итерации xx2 + c оно становится беглецом (обратите внимание, что мы начинаем с 1, а значит, c = 1):

1 → 12 + 1 = 2

2 → 22 + 1 = 5

5 → 26

26 → 677 → 458330 → …

А теперь давайте посмотрим, что произойдет с числом −2, которое является беглецом в итерации xx2. В случае итерации xx2 + c оно превращается в узника (обратите внимание, что мы начинаем с −2, значит, c = −2):

–2 → –22 – 2 = 2

2 → 22 –2 = 2

2 →2

2 →2

Оказывается, в итерации xx2 + c множество узников содержат числа от −2 до 0,25, как показано на рисунке ниже.

Множество узников итерации x → x2 + с

Теперь поиграем в игру «узники против беглецов» на комплексной плоскости — системе координат, в которой каждая точка определяется комплексным числом. Для начала давайте вспомним, как на комплексной плоскости выполняется операция умножения: умножение на число i эквивалентно повороту против часовой стрелки на 90 градусов. В более общем виде, когда два комплексных числа умножаются друг на друга, углы, которые образуют соответствующие точки с горизонтальной осью, необходимо сложить, а расстояния от начала координат — умножить. (Обозначим комплексные числа символом z, а не a + bi.) На представленном ниже рисунке комплексное число z1 находится под углом θ градусов к горизонтали, на расстоянии r, а число z2 — под углом ϕ градусов к горизонтали, на расстоянии R. Таким образом, комплексное число z1 × z2 расположено под углом θ + ϕ градусов по отношению к горизонтальной оси, на расстоянии r × R. Теперь становится понятно, почему умножение на i — это четверть оборота. Число i — это точка на комплексной плоскости с координатами (0, 1), одна единица вверх по мнимой оси, под прямым углом к горизонтали. Следовательно, умножение комплексного числа, представленного соответствующей точкой на комплексной плоскости, на число i, сводится к повороту на 90 градусов против часовой стрелки и умножению расстояния этой точки от начала координат на 1, значит, расстояние остается прежним — это и есть математическое описание четверти оборота.

Умножение на комплексной плоскости

Что происходит с комплексными числами в итерации zz2?

Начнем с мнимого числа i:

ii2 = –1

–1 → 1

1 → 1

Следовательно, i принадлежит множеству узников.

Существует более быстрый способ обнаружить множество узников на комплексной плоскости с использованием информации об умножении комплексных чисел. При умножении двух комплексных чисел мы суммируем углы и умножаем расстояния. Следовательно, для возведения комплексного числа в квадрат необходимо удвоить его угол и возвести в квадрат расстояние. Рассмотрим единичную окружность — с радиусом 1 и центром в начале координат. Все точки такой окружности находятся на расстоянии 1 от начала координат, а это значит, что квадрат любой из этих точек расположен на расстоянии 12 = 1 от начала координат. Другими словами, квадрат числа, соответствующего точке на единичной окружности, остается на единичной окружности. Тогда в случае итерации zz2 все точки на окружности должны принадлежать к множеству узников. Аналогичным образом, если расстояние от точки до начала координат меньше 1, квадрат числа, соответствующего этой точке, находится ближе к началу координат и в процессе итерации будет приближаться к нему все больше. Следовательно, все точки, которые расположены внутри единичной окружности, тоже принадлежат к множеству узников. С другой стороны, если расстояние от точки до начала координат больше 1, квадрат числа, соответствующего этой точке, находится дальше от начала координат и в процессе итерации будет отдаляться от него все больше и больше. Таким образом, в случае итерации zz2 множество узников представляет собой единичный круг, показанный на рисунке ниже.

Множество узников в итерации z → z2

Перейти на страницу:

Похожие книги