Читаем Краткая история науки полностью

К 1945 году усилия немцев, японцев и русских по созданию собственной атомной бомбы не принесли результатов, несмотря на то что один из американских ученых передавал России всю информацию. Но результатом Манхэттенского проекта стали две бомбы, в одной использовался уран, в другой полоний, изготовленный людьми радиоактивный элемент. Тестовая бомба меньшего размера прошла испытания в одной из пустынь США, и она сработала.

Новое оружие оказалось готово к использованию.

Германия капитулировала 9 мая 1945 года, так что до Европы атомная бомба не добралась. Но война на Тихом океане еще продолжалась, и новый президент США. Гарри Трумэн, приказал сбросить урановый заряд на город Хиросима 6 августа того же года. Детонация произошла благодаря столкновению двух кусков радиоактивного металла. Япония не сдалась и после этого, так что по приказу Трумэна плутониевая бомба упала на другой город. Нагасаки, тремя днями позже, и эта акция фактически завершила войну[9].

Бомбы убили около трехсот тысяч человек, большей частью гражданских лиц. Всему миру стала очевидна чудовищная сила ядерной энергии, и мир после этого изменился навсегда. Многие ученые, которые участвовали в создании оружия массового поражения, верили, что их достижения помогли закончить ужасную войну, но беспокоились по поводу того, что именно они создали.

Невероятная сила атомной энергии продолжает сохранять важность и в наши дни, но не исчезла и опасность ее применения в военных целях. Недоверие между Россией[10] и США продолжало существовать и после Второй мировой, когда десятилетиями тянулась так называемая холодная война. Обе стороны накопили огромные арсеналы ядерного или атомного оружия. К счастью, они так и не были пущены в ход ни в одном из кризисов, а в дальнейшем эти запасы сильно уменьшились благодаря международным соглашениям.

Зато число стран, обладающих ядерным оружием, выросло.

То, что физики узнали, работая над Манхэттенским проектом, позже было использовано и в мирных целях. Ядерная энергия может стать источником электричества, и при этом не выделяется парниковый газ, неизбежный спутник сжигания угля и другого ископаемого топлива. Франция получает почти три четверти своей энергии от АЭС. Япония – около четверти.

Опасность несчастных случаев и риск террористических атак вызывают беспокойство и страх по поводу ядерных технологий, несмотря на все их преимущества. Немногие явления в современной науке и технике могут стать лучшей иллюстрацией смеси политических и социальных факторов, чем наши знания и умения в области ядерной энергетики.

Глава 32

Изменивший правила игры: Эйнштейн


Альберт Эйнштейн (1879–1955) известен благодаря гриве седых волос и теориям относительно материи, энергии, пространства и времени. А еще уравнению e = mc2. Его идеи могут выглядеть совершенно непонятными, но они изменили тот угол зрения, под которым мы смотрим на Вселенную.

Однажды Эйнштейна спросили, как выглядит его лаборатория, и вместо ответа он вытащил из кармана авторучку. Он был мыслитель, а вовсе не экспериментатор, работал за столом или около учебной доски, а не с приборами.

И все же даже Эйнштейн нуждался в информации, которую можно добыть только опытным путем, и тут он в особенности полагался на труды немецкого физика Макса Планка (1858–1947). Планк был не только мыслитель, но еще и экспериментатор. Наиболее важное открытие он сделал в возрасте около сорока лет, когда работал в Берлинском университете.

В 1890-х он начал карьеру, занимаясь электролампами, пытаясь найти способ изготовления лампочки с максимальной эффективностью. В экспериментах он использовал гипотезу «абсолютно черного тела», гипотетического объекта, поглощающего все виды падающего на него излучения и ничего не отражающего обратно. Подумайте, насколько жарко вам будет, если надеть черную футболку на солнцепеке, и насколько прохладнее будет в белой. Черная ткань поглощает намного больше энергии из солнечного света, чем белая, хотя кое-что и отражает.

Но абсолютно черное тело не может сохранить внутри себя всю энергия, и как же оно от нее избавляется?

Планк знал, что объем поглощенной энергии зависит от конкретной длины волны (частоты) света. Он проделал тщательные вычисления энергии разных длин волн и вывел математическое уравнение E = hv, где энергия (E) равняется частоте (v), умноженной на некую константу, постоянное число (h). Результат, полученный из уравнения немецкого ученого, всегда был целым числом, не дробью, и это оказалось очень важно, поскольку значило, что энергия выделяется фиксированными маленькими порциями.

Планк назвал их «квантами» (от латинского quantum – «сколько») и опубликовал работу по этому поводу в 1900 году, представив идею квантовости новому столетию. После этого и физика, и наш собственный взгляд на мир изменились навсегда, а константа из уравнения позже получила имя «постоянная Планка».

Само же уравнение оказалось не менее важным, чем эйнштейновское E = mc2.

Перейти на страницу:

Все книги серии Краткая история

Похожие книги

Что? Где? Когда?
Что? Где? Когда?

Книга известных игроков телевизионных клубов «Что? Где? Когда?» и «Брэйн ринг», членов Международной ассоциации клубов «Что? Где? Когда?» популяризирует интеллектуальные игры как эффективный способ занятия досуга и развития творческих способностей людей всех возрастов.Авторы раскрывают секреты составления вопросов, знакомят с методикой тренировки интеллектуальных способностей, делятся богатым опытом проведения турниров команд «Что? Где? Когда?» и «Брэйн ринг».В сборнике приведены вопросные материалы турниров, организованных московскими клубами «Что? Где? Когда?» в сезоны 1997-1999 гг.

Владимир Григорьевич Белкин , Евгений Венедиктович Алексеев , Ирина Константиновна Тюрикова , Максим Оскарович Поташев , Наиля Адилевна Курмашева

Научная литература / Прочая научная литература / Образование и наука
ДНК и её человек. Краткая история ДНК-идентификации
ДНК и её человек. Краткая история ДНК-идентификации

Книга Елены Клещенко адресована всем, кого интересует практическое применение достижений генетики в таких областях, как криминалистика, генеалогия, история. Речь о возможности идентификации человека по его генетическому материалу. Автор рассказывает о методах исследования ДНК и о тех, кто стоял у их истоков: cэре Алеке Джеффрисе, придумавшем ДНК-дактилоскопию; эксцентричном Кэри Муллисе, сумевшем размножить до заметных количеств одиночную молекулу ДНК, и других героях «научных детективов».Детективную линию продолжает рассказ о поиске преступников с помощью анализа ДНК – от Джека-потрошителя до современных маньяков и террористов. Не менее увлекательны исторические расследования: кем был Рюрик – славянином или скандинавом, много ли потомков оставил Чингисхан, приходился ли герцог Монмут сыном королю Англии. Почему специалисты уверены в точности идентификации останков Николая II и его семьи (и отчего сомневаются неспециалисты)? В заключении читатель узнает, почему нельзя изобрести биологическое оружие против определенной этнической группы, можно ли реконструировать внешность по ДНК и опасно ли выкладывать свой геном в интернет.

Елена Владимировна Клещенко

Научная литература