Сын сапожника из Нортгемптона, столицы сапожного дела в Великобритании, Крик поздно делал диссертацию. Хотя его дед, натуралист Уолтер Дробридж Крик, был знаком с Чарльзом Дарвином и даже был соавтором последней статьи Дарвина в журнале Nature, Френсис Крик не имел глубоких познаний в области биологии. Он учился в Университетском колледже Лондона, где когда-то Роберт Грант наставлял Генри Чарлтона Бастиана. Подобно Бастиану, Крика больше всего интересовали две важные, но мало изученные проблемы биологии: сознание и происхождение жизни. Однако он занялся тем, что его интересовало меньше, пытаясь получить ученую степень по физике. Когда началась Вторая мировая война, Крик работал над задачей, которую впоследствии назвал «самой занудной из возможных задач»: он измерял вязкость воды в диапазоне температур от 100 до 150°C. Освобождение от этого скучного дела принес немецкий самолет, который сбросил на лабораторию, где работал Крик, глубинную бомбу и уничтожил его экспериментальное оборудование.
Затем Крик стал сам заниматься созданием морских мин в исследовательской лаборатории Британского военно-морского флота. Он придумал довольно хитроумную конструкцию мины, взрывавшуюся только под действием чрезвычайно сильных магнитных полей, которые использовались немецкими минными тральщиками.
В конце войны Крик все еще был аспирантом. Как и многие из поколения физиков, вдохновленных книгой Шрёдингера «Что такое жизнь?», он решил заняться биологией. В 1949 г. он нашел работу в Кавендишской лаборатории Кембриджа[53]
– самой знаменитой физической лаборатории Великобритании. Именно здесь было сделано несколько самых важных открытий, позволивших разгадать секреты живой клетки.В 1912 г., вскоре после установления волновой природы рентгеновских лучей, 25-летний студент Кембриджа Уильям Лоренс Брэгг додумался до того, чтобы по дифракции рентгеновских лучей определять расположение атомов в кристаллах. Вскоре ученые нашли способы кристаллизовать образцы отдельных клеточных компонентов, что позволило проанализировать их структуру на атомном уровне и исследовать механизмы их действия. Открытие Брэгга произвело революцию в биохимии и сделало его самым молодым лауреатом Нобелевской премии за всю историю[54]
.Когда Крик попал в Кавендишскую лабораторию, ее возглавлял Брэгг. Под его руководством лаборатория стала центром самых передовых кристаллографических исследований в мире. Большинство работ было связано с белками, и Крик начал с того, что раскритиковал идею одного из самых блестящих сотрудников лаборатории, австрийского микробиолога Макса Фердинанда Перуца, пытавшегося установить молекулярную структуру гемоглобина. Перуц надеялся, что структура этого белка позволит раскрыть секрет передачи генов, однако Крика данная гипотеза не удовлетворяла. Он склонялся к тому, что секрет наследования связан не с белками, а с малоизученной молекулой нуклеиновой кислоты, называемой ДНК.
В 1871 г. швейцарско-немецкий химик Фридрих Иоганн Мишер выделил новое биохимическое вещество из клеток, обнаруженных в пропитанных гноем повязках, которые он брал из соседнего госпиталя. Мишер понял, что это вещество содержало азот и фосфор, но не содержало серы и, следовательно, не являлось белком. Поскольку вещество было выделено из клеточного ядра, Мишер назвал его «нуклеином» (от
Через 50 с лишним лет после открытия Мишера мир начал осознавать, что ДНК играет в передаче наследственной информации гораздо более важную роль, чем можно было предполагать. В 1943 г. физик канадского происхождения Освальд Эвери в Институте Рокфеллера в Нью-Йорке начал серию опытов с вирусами. Методы химического анализа того времени уже были достаточно сложными и позволили показать, что вирусы, как и клетки, состоят из белков и нуклеиновых кислот – эти два типа соединений удавалось разделить в лабораторных условиях. Работая с вирусом пневмонии, Эвери обнаружил, что может превратить безопасный штамм вируса в вирулентный штамм просто путем контакта с патогенной ДНК. Вывод был таков, что чистая (полностью отделенная от белков) ДНК может передавать генетическую информацию.