Сделав одно из важнейших открытий столетия, Крик вернулся к работе над структурой гемоглобина. Идея о том, что белки все же играют важную роль в механизмах передачи наследственной информации, не умерла полностью. Многие ученые продолжали верить, что ДНК и белки совместно контролируют поток генетической информации и не только ДНК обменивается информацией с белками, но и белки обмениваются информацией с ДНК, так что они вместе отвечают за механизмы наследования. Но постепенно завоевывала поддержку «центральная догма» биологии, сформулированная Криком: генетическая информация может передаваться от нуклеиновых кислот к белкам но не наоборот. Идея о том, что ДНК является единственным носителем генетической информации, получила всеобщее признание после того, как Крик за 13 лет расшифровал генетический код – специфический язык, который живые организмы использовали для общения друг с другом на протяжении миллиардов лет.
Генетический код – самый древний известный нам язык. Он так же или почти так же стар, как сама жизнь. На протяжении миллиардов лет на нем «говорили» все клетки всех живых существ. В нем только четыре «буквы», каждая соответствует специфическому химическому соединению. Их принято обозначать A, C, G и T: аденин, цитозин, гуанин и тимин – это нуклеотидные основания, располагающиеся в длинных последовательностях ДНК в виде трехбуквенных «слов». Неудивительно, что расшифровка кода началась в Великобритании, где во время Второй мировой войны Алан Тьюринг и его коллеги из Блетчли-парка раскодировали немецкие шифровки и создали один из первых в мире компьютеров. При участии нескольких ученых, включая эмигранта из России физика Георгия (Джорджа) Гамова, наиболее известного в качестве автора модели «горячей Вселенной» (уточнения теории Большого взрыва), Крик и его коллеги раскрыли законы генетического языка. К 1966 г., через четыре года после вручения Крику Нобелевской премии за установление структуры ДНК, генетический код был полностью расшифрован. Было показано, как каждое трехбуквенное слово, называемое кодоном, транслируется в соответствующий аминокислотный остаток в белке. С этого момента люди стали понимать клеточный язык живых организмов.
Работая над расшифровкой кода, Крик также пытался установить,
Поняв, что нуклеиновые кислоты играют главную роль в передаче генетической информации, ученые начали по-новому рассматривать вопрос о происхождении жизни. Если какой-то один компонент клетки возник раньше остальных, то сначала должно было сформироваться что-то одно – метаболизм или генетический аппарат. Приверженцы гипотезы первичности метаболизма считали, что первыми появились белки или подобные им молекулы. Их противники, включая Стэнли Миллера, полагали, что дело не в белках, и что первым этапом эволюции было появление ДНК и генетических механизмов. Сначала возникли способные к репликации и мутирующие молекулы, а все остальное появилось в ходе эволюции. Они также считали, что белки без генов не могли эволюционировать.
Сидней Фокс всегда оставался непоколебимым сторонником гипотезы первичности метаболизма. Когда большинство ученых стало склоняться к приоритету репликации или комбинации двух факторов, Фокс начал жаловаться на «монополию нуклеиновых кислот». Однако беда заключалась не в том, что он упорно продолжал отстаивать справедливость модели первичности метаболизма. Хуже, что он настаивал на том, что с помощью опытов с микросферами протеиноидов решил проблему абиогенеза. В 1970-х гг. он занимался изучением электрических зарядов, которые обнаружил на поверхности микросфер и которые, по его мнению, напоминали заряды на поверхности живых клеток. В 1988 г. в книге «Возникновение жизни» Фокс даже утверждал, что его микросферы проявляют «признаки рудиментарного сознания».