Однако электронные лампы потребляют большое количество энергии и сравнительно недолговечны, поэтому ученые принялись искать им альтернативу. Их взгляд упал на кремний, открытый в 1807 году Хамфри Дэви и нашедший применение в радиотехнике в качестве приемника и усилителя сигналов. Усиление действительно работало, однако никто толком не понимал, как именно этому способствует загадочный химический элемент, не относившийся ни к проводникам, ни к изоляторам. Другое дело, что подобное промежуточное положение, судя по всему, было его главным преимуществом, ведь это позволяло создать переключатель, блокирующий или пропускающий ток в зависимости от внешних обстоятельств – иными словами, конструктивный элемент, способный принимать одно из двух логических состояний и тем самым заменяющий классические перфокарты. Для телефонных операторов такая автоматизация открывала большие перспективы, так как позволяла отказаться от телефонисток, вручную соединявших абонентов: сеть постоянно развивалась, с ней росло и количество сотрудниц, а расчеты показывали, что при неизменном росте популярности телефона на эту работу вскоре потребуется привлечь половину всех женщин Америки.
Именно поэтому компания AT amp;T, главный телефонный оператор США, создала Bell Labs, Лаборатории Белла – исследовательское учреждение, где самые светлые головы страны трудились над тем, чтобы заменить телефонисток чем-то более эффективным. И вот тут в игру снова вступает кремний, этот загадочный элемент между двух миров. Атом кремния можно представить себе в образе небольшого четырехрукого монаха, каждой руке которого соответствует по одному электрону.
Атом, конечно, не один в пространстве, а сцепляется с себе подобными, образуя своего рода решетку – как если бы эти монахи держали друг друга за руки.
Что происходит, если добавить в эту группу монахов инородное тело? Свойствами атомов кремния можно управлять, если легировать их, то есть ввести им дозу другого атома. Скажем, если добавить в эту группу пятивалентный атом (например, фосфор), то он окажется донорной примесью: один из его электронов будет отдан кристаллу, а сам атом окажется положительно заряженным. Если же добавить в группу атомов кремния трехвалентный атом (например, алюминий, мышьяк или бор), то образуется дырка, и это будет акцепторная примесь: попадая в дырку, свободный электрон будет изменять заряд атома примеси на отрицательный.
Таким образом мы как бы «меняем полюса местами» или, иными словами, управляем состоянием транзистора: «минус» или «плюс», 0 или 1[8]
.Звучит просто, хотя это вполне себе квантовая механика. Уильям Шокли – признанный специалист в этой области, поэтому именно ему поручают подобрать исследователей в Лаборатории Белла. Тут впору вспомнить семь гномов: в одной команде нужно собрать металлургов, физиков, химиков и математиков. У Шокли прекрасное чутье на таланты, и он приглашает в лабораторию настоящих корифеев своей области – математика Джона Бардина и физика-экспериментатора Уолтера Браттена. Вначале работа спорится, но потом исследователи понимают, что предложенная Шокли концепция не работает.
Идея Шокли выглядит следующим образом: над кристаллом кремния (на следующей странице он изображен в виде ящика) находится тонкая пластина из алюминия, на которую от батареи подается напряжение. Теоретически находящиеся в пластине электроны должны в этот момент начать проникать в кремний, но этого не происходит. Желаемый эффект, позволяющий управлять зарядом атомов кремния, не наступает. Целый год Бардин и Браттен экспериментируют с самыми разными материалами, пока на поверхность полупроводника однажды случайно не падает капля воды. Тут они понимают, в чем была загвоздка: сама поверхность кристалла образует своего рода защитный слой, препятствовавший проникновению электронов внутрь, а вода его разрушает. Это прорыв в полном смысле этого слова: после того как Браттен соскабливает верхний слой и вводит внутрь кристалла золотой стержень, ученым удается перенести электроны внутрь кремния и добиться взаимодействия. Транзистор готов!