Читаем Кристаллы полностью

В качестве повторяющегося рисунка здесь выбрана более простая, но, так же как и на рисунке 12, лишённая собственной симметрии фигурка. Однако составленные из неё узоры симметричны, и их различие определяется различием симметрии расположения фигурок.

Мы видим, что, например, в первых трёх случаях рисунок не обладает зеркальной плоскостью симметрии – нельзя поставить вертикальное зеркало так, чтобы одна часть рисунка была «отражением» другой части. Напротив, в случаях 4 и 5 имеются плоскости симметрии. В случаях 8 и 9 можно «установить» два взаимно перпендикулярных зеркала. В случае 10 имеются оси 4-го порядка, перпендикулярные чертежу, в случае 11 – оси 3-го порядка. В случаях 13 и 15 имеются оси 6-го порядка и т.д.

Плоскости и оси симметрии наших рисунков выступают не по одиночке, а параллельными семействами. Если мы нашли одну точку, через которую можно провести ось (или плоскость) симметрии, то найдём быстро и соседнюю, и далее на таком же расстоянии третью и четвёртую и т.д. точки, через которые проходят такие же оси (или плоскости) симметрии.

Выберем теперь на этих узорах такой наименьший кусок, перемещая который параллельно самому себе на расстояния, равные длинам его сторон, мы сможем воспроизвести всю картину обоев. Мы столкнёмся при этом с несколькими интересными обстоятельствами.

Во-первых, этот наименьший кусок, или, как его принято называть, элементарная ячейка может оказаться параллелограммом (например, случай 1 на рисунке 13), прямоугольником (случаи 3, 4 и др.), ромбом с углом 60° или же квадратом.

Во-вторых, на элементарную ячейку в разных случаях приходится различное число фигурок. Это число равно 1 для случая 1, 4 для случая 8, 6 для случая 17 и т.д.

Принято выбирать элементарные ячейки так, чтобы они были наименьшими, но отражали бы симметрию, присущую узору в целом. Так, в случае 9 можно выбрать прямоугольную ячейку, на которую приходится 8 фигурок, и вдвое меньшую косоугольную. Рисунок указывает на высокую симметрию взаимного расположения фигурок – наличие взаимно перпендикулярных плоскостей симметрии. Косоугольная элементарная ячейка делала бы не очевидной эту высокую симметрию. Поэтому здесь и в других подобных случаях в качестве элементарной ячейки выбирается прямоугольник.

Однако некоторая свобода выбора в расположении элементарной ячейки всегда имеется. Так, совершенно безразлично, поместим ли мы углы ячейки в местах «головок» или «хвостиков» фигурок или же где-либо на белом поле между ними. В случаях 14 или 15 выбор ячейки несколько лучше подчёркивает симметрию обоев, чем, скажем, в случае 8, но сути дела это не меняет, и мы можем, если желаем, произвольно переместить углы ячейки в случае 8, оставляя, конечно, размеры ячейки теми же и стороны её параллельными самим себе.

Способы заполнения элементарной ячейки отдельными фигурками во всех случаях различны. Этим прежде всего и отличаются друг от друга изображённые 17 случаев. Таким образом, художник, выполнивший повторяющийся рисунок обоев, должен указать, кроме того, каким из 17 способов надо построить обои из его рисунка. Например, для случая 8 надо выполненный рисунок расположить в заштрихованной части (одной четверти) элементарной ячейки и отразить его в двух «зеркалах» (рис. 14).

17 типов симметрии плоского узора не исчерпывают, конечно, всего разнообразия узоров, составляемых из одной и той же фигурки: художник должен указать ещё одно обстоятельство, – как расположить фигурку по отношению к граничным линиям ячейки. На рисунке 14 показаны два узора обоев с той же исходной фигуркой, но различно расположенной по отношению к зеркалам. Оба эти узора относятся к случаю 8.

Рис. 14. Два разных расположения фигурок при одинаковом типе симметрии узора.

Мы не станем приводить правила построения обоев во всех остальных случаях.

Какое же отношение имеют обои к кристаллу?

Каждое тело, в том числе и кристалл, состоит из атомов. Простые вещества состоят из одинаковых атомов, сложные – из атомов двух или нескольких сортов. Предположим, что мы могли бы в сверхмощный микроскоп рассмотреть поверхность кристалла поваренной соли и увидеть центры атомов. Рисунок 15 показывает, что атомы расположены вдоль грани кристалла, как узор обоев.

Рис. 15. Схема расположения атомов натрия (I) и хлора (II) на грани куба кристалла каменной соли.

Теперь мы готовы к тому, чтобы понять, как построен кристалл. Кристалл представляет собой «пространственные обои». Пространственные, то есть объёмные, а не плоские элементарные ячейки – это «кирпичи», прикладыванием которых друг к другу в пространстве строится кристалл.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука