Затея странная, но что нам остается еще делать? Мы создали Сеть, но не можем точно сказать, что же мы, собственно, создали. Самый простой метод изучения лабиринта состоит в его постепенном и методическом исследовании методом «ощупывания», и именно такую попытку в 1999 году предприняла группа ученых из университета Нотр-Дам штата Индиана (Река Альберт, Хавонг Джинг и Альберт-Ласло Барабаши). Для решения этой формально картографической задачи они просто запустили в лабиринт «робота», поручив ему составить схему всех замкнутых маршрутов по Паутине. Разумеется, робот тоже был виртуальным, т. е. представлял собой компьютерную программу, которая позволяла входить на все сайты и проверять все гиперссылки. На каждом сайте робот получал набор новых сайтов и продолжал свою работу, переходя все к большему числу сайтов. После каждого такого «налета» на сайт робот информировал своих создателей о числе обнаруженных гиперссылок по каждой из веб-страниц[137]
.Понятно, что анализ фантастического количества документов в Паутине не под силу роботу с самой совершенной программой, поэтому исследователи поручили ему изучить только связи домена, относящегося непосредственно к университету Нотр-Дам (www.nd.edu
). При этом было выявлено 325 729 документов HTML (HTML — стандартный гипертекстовый язык написания документов, придуманный Тимом Бернерсом-Ли), связанных посредством примерно 1,5 миллиона связей-ссылок. Разработчики программы попытались на основе этой довольно обширной и репрезентативной базы данных определить некоторые характеристики сети в целом.Прежде всего Альберт и ее коллеги оценили распределение вероятностей входящих и исходящих ссылок и показали, что оно описывается степенным законом (рис. 16.2). Часть веб-страниц имеет огромное количество ссылок, многие — всего несколько, но общая тенденция остается неизменной, так что, например, при удвоении числа ссылок число соответствующих веб-стра- ниц уменьшается в постоянное число раз. Удивляет не уменьшение числа веб-страниц с большим числом ссылок (именно такого результата и следовало ожидать), а строгое совпадение со степенным законом распределения. Этот факт вовсе не выглядит очевидным, скорее естественным было бы гауссовское, колоколообразное распределение со средним значением около 3-4 ссылок. Степенной закон распределения, как уже отмечалось, является характерной особенностью
Проблема заключается в том, что степенной закон распределения не предопределен условиями формирования системы. Каждый человек может свободно создать собственную веб-страницу в университете Нотр-Дам (как и в любом другом домене) и независимым образом решает, каким числом гиперссылок следует снабдить свою страницу. (Разумеется, никто не может заранее определить число возможных входящих ссылок для своей страницы.) Удивительным образом полученная на основе этой вольности принятия решений обширная статистика вдруг оказывается строго соответствующей степенному закону в широком интервале количества ссылок — от одной до тысячи и более. Напомним, что такое же распределение было описано для физических систем, соответствующих критическим состояниям осыпающихся песчаных куч с очень непростым механизмом самоорганизующейся критичности (см. гл. 12).
Распределение по степенному закону прежде всего свидетельствует о том, что Сеть нельзя рассматривать в качестве аналога сетей, предложенных Стивеном Строгацем и Дунканом Ваттсом для описания «малых миров» (гл. 12). В их математических расчетах переключения связей внутри графов приводили к некоторым предпочтениям в связности структур, вследствие чего функция распределения вероятностей числа связей на отдельную вершину возрастала до некоторого значения, а затем начинала уменьшаться. С другой стороны, Сеть в целом вовсе не похожа и на очень большой случайный граф, для которого характерно совершенно иное распределение вероятностей. В частности, при возрастании числа связей степенной закон (рис. 16.2) обеспечивает значительно большее число связей на вершину, чем в случайных графах или в промежуточных графах для малых миров, построенных Строгацем и Ваттсом, подобно тому как степенной закон распределения флуктуаций рыночных показателей увеличивает вероятность больших отклонений.