Эта мысль может показаться прямо-таки фантастической. Ведь мы тем самым принимаем давно уже известную и широко осуществлявшуюся тысячелетия тому назад, правда, отнюдь не во всех областях, идеализацию пространства-времени со всеми их формами, со всеми изменениями пространства и времени и со всеми изменениями их форм. В этом и заключалась, как мы уже знаем, идеализация, осуществленная искусством измерения не просто как искусством измерения, а как искусством создания эмпирически каузальных конструкций (причем, само собой разумеется, как и любое искусство, оно использует и дедуктивные выводы). Теоретическая установка и тематизация чистых сущностей и конструкций ведет к чистой геометрии (под ней здесь понимается и математика чистых форм вообще); а позднее - вместе с поворотом, который нами уже был описан, - возникает, как мы помним, прикладная геометрия: практическое искусство измерения, осуществляющееся на основе идеальных сущностей и идеальных конструкций, построенных с их помощью. Следовательно, возникает практическое искусство измерения в соответствующих, весьма узких областях конкретно-причинной объективации физического мира. Коль скоро все это можно сделать явным, то выдвинутая уже давно и казавшаяся странной мысль перестала казаться странной, а благодаря научному воспитанию в школе, начинающемуся уже в детском возрасте, эта мысль обрела, наоборот, характер чего-то само собой разумеющегося. То, что в донаучном опыте мы воспринимаем как цвет, звук, тепло, вес тел, оказывается при каузальном подходе, например, тепловым излучением тел, которое делает теплым все окружающие тела и тем самым обнаруживается "физически" - как колебания звуковые, тепловые, следовательно, только как процессы мира форм. Ныне этот способ универсальной индикации рассматривается как нечто само собой разумеющееся. Однако если возвратиться к Галилею, то для него - создателя концепции, впервые сделавшей возможной создание физики,- все это не было чем-то само собой разумеющимся, каким оно стало благодаря его деятельности. Для Галилея само собой разумеющейся была лишь чистая математика и обычный способ ее применения.
Если задуматься о мотивации Галилея, решающей для формирования идеи новой физики, то необходимо отметить, что в его эпоху ход его мысли казался странным и задаться вопросом, как он пришел к мысли, согласно которой все специфические чувственные качества должны рассматриваться как реальное обнаружение математических индикаторов процессов, присущих идеальным формам, всегда принимаемых как нечто .само собой разумеющееся. Из этого вытекает возможность косвенной математизации в полном смысле слова, поскольку возможны конструирование и объективное определение (хотя и опосредствованно и с помощью индуктивных методов) всех процессов с точки зрения полноты ex datis. Бесконечная природа - этот конкретный универсум каузальности стала своеобразной прикладной математикой - таково утверждение этой странной концепции.
Все же вначале следует ответить на вопрос, что же вызвало к жизни в этом традиционно данном мире, математизация которого весьма ограниченна и осуществляется так, как было указано греками, что же вызвало к жизни мысль Галилея?
d) Движущие мотивы, галилеевской концепции природы