Конечно, для Галилея индуктивность вовсе не была гипотезой. Для него физика была столь же определенна, как и современная ему чистая и прикладная математика. Для него гипотеза непосредственно указывала и методический путь своей реализации. Для нас же успешность реализации значима как проверка гипотезы, гипотезы отнюдь не само собой разумеющейся и относящейся к недоступной фактической структуре конкретного мира. Прежде всего Галилей стремился разработать плодотворные и непрерывно совершенствуемые методы, выйти за пределы того, что уже было достигнуто, создать действительные методы измерения, позволяющие предсказать то, что происходит в мире идеальных объектов математики в качестве идеальных возможностей, измерения, например, скорости, ускорения. Но чистая математика форм сама нуждалась в плодотворном развертывании конструктивной квантификации - это позднее и привело к созданию аналитической геометрии. Необходимо систематически осмыслить и с помощью ряда вспомогательных средств выразить универсальность причинности, или, как можно было бы сказать, своеобразную универсальную индуктивность опытного мира, существование которой уже предполагалось в исходной гипотезе. Следует обратить внимание на то, что в новой, конкретной и двусторонней идеализации мира, содержавшейся в гипотезе Галилея, как нечто само собой разумеющееся, предполагалась универсальная и точная причинность, которая не достигается, конечно, с помощью индукции через демонстрацию индивидуальных разновидностей причинности, а, наоборот, предшествует любой индукции отдельных причинных связей и руководит ею. Именно это и характерно для конкретно всеобщей, созерцаемой причинности, которая сама созидает конкретно-чувственные формы мира в противовес частным, индивидуальным формам причинности, опытно постигаемым в жизненном мире.
Эта универсальная идеализованная причинность охватывает все фактические формы и полноту качеств в их идеальной бесконечности. Несомненно, если измерения в сфере форм должны привести к действительным объективным определениям, то и события должны быть рассмотрены с точки зрения их полноты. Необходимо охватить совершенно конкретные вещи и события методом, иначе говоря, найти ту каузальную связь, которая существует между фактуальной полнотой и формами. Применение математики к реально существующей полноте форм делает возможным конкретизацию причинных предпосылок, которые впервые здесь становятся определенными. Как действительно продвинуться вперед, как осуществить методологически выверенную работу в чувственно воспринимаемом мире, как в этом мире фактуально постигаемых чувственно данных, в мире, в который идеализация внесла еще не познанную бесконечность, достичь каузальной детерминации в двух своих аспектах, как раскрыть скрытую бесконечность с помощью методов измерения, как при этом с помощью возрастающей аппроксимации в сфере форм сделать все более совершенными индикаторы качественной полноты идеализованных тел и как определить сами эти тела с помощью методов аппроксимации в качестве конкретных событий со всеми их идеальными возможностями,- все это предмет открытий в физике. Иными словами, это предмет исследовательской практики без предварительного систематического осмысления принципиальных возможностей и важных предпосылок математической объективации, которая позволила бы определить конкретно-реальное в сети универсальных, конкретных причинных связей.
Открытие - это смесь инстинкта и метода. Конечно, возникает вопрос, может ли такое смешение быть в строгом смысле слова философией, или наукой? Может ли оно быть познанием мира в предельном смысле, а именно быть средством понимания мира и самого себя. Галилей, будучи первооткрывателем, последовательно шел к реализации своей идеи - сформировать методы измерения сходных данных всеобщего опыта: и действительный опыт подтвердил то, что было предсказано гипотезой для всех случаев (хотя это еще не было радикально проясненной методикой). Он действительно выявил причинные закономерности, которые могут быть математически выражены в "формулах".
В актуальном процессе измерения чувственно данных опыта, конечно же, были получены лишь эмпирически-неточные величины и количества. Искусство измерения- это искусство, нуждающееся в постоянном совершенствовании "точности" измерения. Это не просто искусство использования уже найденного метода, а метод, который постоянно сам себя улучшает, с помощью изобретения все новых и все более искусных средств (например, инструментов). Соотнесенность мира с чистой математикой в качестве поля ее приложения позволяет выявить математический смысл "in infinitum" - "снова и снова" и тем самым любое измерение обретает смысл приближения к недостижимому, но идеально-тождественному полюсу, а именно к определенным математическим сущностям или, иначе говоря, к числовым конструкциям, принадлежащим этим сущностям.