В эпоху Максвелла и при его прямом участии произошло объединение физики, до того состоявшей из весьма автономных частей: механика, теплота и оптика. Статистическое объяснение теплоты объединило ее с механикой, а оптика оказалась проявлением электромагнитных сил. Но подлинно эпохальную роль Максвелл сыграл в том, что фундамент физики был впервые капитально перестроен. Величественное здание, заложенное Галилеем и возведенное Ньютоном, вместило новую физику молекулярно-тепловых явлений, но оказалось тесным, чтобы вместить — без перестройки — физику электромагнетизма.
Глобальное электромагнитное объединение
Из достижений Максвелла физиков более всего поразило раскрытие электромагнитной природы света — древнейшего, важнейшего и общедоступного физического явления, ничем не напоминавшего электричество и магнетизм.
Первый намек увидел Фарадей, обнаружив в 1845 году, что магнитное поле влияет на свет. К тому времени уже было известно, что свет — это волны, то есть распространение колебаний, и что колебания эти поперечны: происходят поперек направления распространения. Считалось, что колеблется «светоносный эфир» — незаметная среда, похожая, однако, на твердые тела, в которых лишь и бывают поперечные колебания, а в газах и жидкостях возможны лишь продольные, как, например, звук. Из естественного света можно выделить часть, в которой колебания происходят лишь в одном направлении, — поляризованный свет. Наблюдая распространение такого света в магнитном поле, Фарадей обнаружил, что направление поляризации поворачивается, и заподозрил влияние магнитного поле на светоносный эфир.
Лишь когда Максвелл получил систему уравнений электромагнитного поля, он обнаружил, что одно из решений этих уравнений — распространение поперечных колебаний, притом со скоростью, всего на один процент отличающейся от скорости света. Максвеллу понадобилось еще несколько лет, чтобы прийти к выводу, что величина скорости, полученная из электромагнитных измерений, и величина, полученная в опытах со светом, — это два разных способа измерения одного и того же. И что свет — это частный случай электромагнитных колебаний, когда за одну секунду происходит миллион миллиардов колебаний.
Электромагнитное объяснение света было очень впечатляющим, но говорило об уже известном явлении. А предсказание электромагнитных волн самой разной частоты открывало совершенно новую область физических явлений и, главное, дало возможность проверить саму теорию, которую скептически встретили не только в Германии и Франции, где царила теория дальнодействия. Ее не принял и Уильям Томсон, самый знаменитый тогда в Британии физик, притом расположенный к Максвеллу. Одобрив промежуточную теорию Максвелла, основанную на молекулярных вихрях, Томсон в штыки встретил то, что Максвелл убрал эти вихревые леса, оставив свои уравнения без объяснения.
За проверку взялся германский физик Генрих Герц, имевший свои причины сомневаться в Максвелловой теории. Заставить электрический заряд делать миллион миллиардов колебаний в секунду и проверить, появится ли свет, было задачей невыполнимой, но проверить теорию можно было и колебаниями гораздо меньшей частоты.
Электромагнитные колебания в проводной цепи к тому времени уже исследовали экспериментально и поняли теоретически. Началось все с эффектного опыта германского физика Беренда Феддерсена, показавшего, что электрическая искра, или разряд, — это на самом деле очень быстрый колебательный процесс. Период колебаний определяется свойствами проводной цепи, как следовало из тогдашней электромагнитной,
Одно дело — колебания в проводной цепи, совсем другое — распространение колебаний без проводов из одной цепи в другую. Герц придумал, как создать сильные электромагнитные колебания и как обнаружить их с помощью так называемого осциллятора Герца. Это петля из проводника с маленьким разрывом, в котором проскакивает искра, с периодом колебаний в миллиард раз больше световых. В 1888 году Герц экспериментально доказал существование электромагнитных волн, предсказанных Максвеллом, подтвердив их свойства, аналогичные свету.
Тогда, собственно, и началась эпоха Максвелла, десять лет спустя после смерти 48-летнего физика — величайшего физика всех времен и народов, если оценивать науку с чисто практической точки зрения. Сам Максвелл как фундаментальный теоретик, конечно, так на науку не смотрел. Но век спустя Ричард Фейнман на лекции по электромагнетизму сказал студентам: