Читаем Кто вы? полностью

Вычисляя спектр повторяющегося сигнала, мы подставляем период его повторения T в ряд Фурье. Но как быть с неповторяющимся сигналом? Ведь у него нет периода. А вот Фурье нашел его! Он положил его стремящимся к… бесконечности (T→∞). Сигнал повторяется через бесконечно большое время; попросту говоря, никогда. Но формально он есть, и его можно подставить в формулу. По мере увеличения периода T число «палочек» на спектральной стороне медали растет, при T→∞ их становится бесконечно много; они заполняют всю ось частот, образуя сплошной частокол. Форма этого забора зависит от вида сигнала.

Если в некотором участке частот имеется резкий подъем, значит здесь сосредоточена основная энергия сигнала. Если по мере удаления от этого участка амплитуды составляющих убывают и постепенно стремятся к нулю, то к нулю стремится и энергия сигнала.

Итак, сигнал — медаль с двумя сторонами. Посмотришь на одну — видишь единое сложное колебание (временной ход). Заглянешь на другую — видишь набор отдельных синусоидальных колебаний (спектр).

Естественно, встает вопрос: что же существует на самом деле — временнóй ход или спектр?

В прошлом столетии этот вопрос вызывал ожесточенные баталии между учеными мужами. Дело, говорят, доходило до таскания за бороды. Сегодня он предельно ясен. Если прибор, с помощью которого вы наблюдаете колебание, реагирует на сумму составляющих спектра, то вы видите временнóй ход. Если прибор реагирует на отдельные гармонические составляющие сигнала, то вы видите его спектр. Недавно я задал студентам этот же вопрос. В аудитории поднялся страшный шум. Мнения разделились почти поровну. Значит, далеко не всем это ясно.

Какую же идею надо положить в основу приемника, чтобы он видел не сумму составляющих, как обычный приемник, а все отдельные гармонические составляющие его спектра?

А очень простую. Надо разделить участок частот, где сосредоточена основная энергия, на ряд узеньких полосочек и взять столько фильтров, сколько получилось полосочек. Каждый из них должен быть настроен на свою частоту и иметь полосу пропускания, равную этой полосочке. Если теперь подключать катодную трубку поочередно к фильтрам, то на экране можно видеть спектр сигнала.

Эта картинка подтверждает правомочность смелого шага Фурье — считать период непериодического сигнала стремящимся к бесконечности. Расчетные же спектры для любых сигналов блестяще совпадают с экспериментом.

Я долго не верил этому бесконечному периоду. Он мне казался мистикой до тех пор, пока я не убедился в нем экспериментально, на схемах типа нашей. Это отличный пример теоретической абстракции, несущей пользу конкретным земным делам.

Прибор, позволяющий наблюдать спектр сигнала, получил название спектрографа. Он может вести наблюдение в широком диапазоне частот, и тогда на экране трубки мы видим спектры всех работающих в этом участке радиостанций. Такие спектрографы использует земная радиоразведка для контроля сигналов противника. В нашей задаче он тоже будет очень полезен. Только здесь мы будем искать сигналы не врагов, а друзей.

Встречающиеся в печати призывы об опасности контакта с обитателями иных миров кажутся мне лишенными оснований. Ведь речь идет о цивилизациях нашего и более высокого уровня развития. Если следовать этим призывам, то можно превратиться в щедринского карася, который «жил — дрожал и умирал — дрожал».

Но вернемся к спектральной стороне медали. Наблюдение за спектрами сигналов, приходящих из далеких миров, может быть весьма полезным. По картине спектра на трубке можно определить участок основной концентрации энергии сигнала и его конфигурацию. Сделать замер средней частоты этого участка f0 и его протяженности ΔF и по ним настроить приемник для поимки рыбок на частоту f0 и взять его горло не уже ΔF. При поиске относительных сигналов по ним определяют время задержки, считая его равным 1/ΔF. Далее охватывая сканированием значительные частотные области, можно определить «подозрительные» участки концентрации энергии возможных разумных сигналов. Наконец, в спектре могут быть спектральные признаки, которые не встречаются в естественных излучениях небесных тел. Это могут быть различные резкие вырезки, изломы, ямы — следы создавшего их разума.

Таким образом, мы приходим к выводу, что приемное устройство должно вести одновременно наблюдение за обеими сторонами медали — временной и спектральной. Это должен быть гибрид из обычного приемника и спектрографа. Некоторые элементы у них могут быть общие.

Насколько известно, таких устройств, учитывающих специфику поиска разумных сигналов, земляне еще не соорудили. Вот отличная задача для молодежи, ищущей приложения своим силам.

Узнаем ли золотую?

Наконец, пусть все условия выполнены. Золотая рыбка уже в неводе: она как раз угодила в главный лепесток антенны. Приемник был настроен на волну рыбки. Его горло было достаточно широким, и он ее тут же проглотил. Детектор соответствовал сигналам игреков и успешно разгрузил информацию.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука