Читаем Кто вы? полностью

С амплитудным и частотным сигналами справиться легко: достаточно использовать обычные наши детекторы. Но как быть с фазовыми сигналами и сигналами, меняющимися по форме? Ведь разгрузить такую информацию принципиально можно только при наличии на приеме некоторых предварительных сведений о сигнале, то есть, как мы уже говорили, надо знать, какая форма несет Да, а какая — Нет! Или, говоря на языке радиотехники, надо знать опорные сигналы.

Поясним это примером. Некий детектив ищет в толпе двух незнакомых ему людей. Опорными сигналами ему служат их фотографии. Сличая фотографии с мелькающими лицами, он может отыскать необходимых ему двоих. Все остальные являются как бы внешними помехами в этой операции, они затрудняют поиск. Есть тут и внутренние помехи: это изменение в одежде, в прическе, наложение грима и даже пластические операции. (Последний варварский метод, например, в ходу у скрывающихся соратников Гитлера. Но и он не всегда им помогает.)

«Орлиным взглядом, — как часто пишут в приключенческих романах, — сравнивая живые лица и их копии на фотобумаге, бывалый детектив быстро вылавливает незнакомцев». Нечто подобное происходит в приемнике. В память приемника записывают две возможные формы сигнала. Глаз детектива заменяется двумя перемножителями. В одном образуется произведение входного сигнала на первый опорный сигнал, а в другом — на второй.

Если входной и опорный близки по своей форме, то на выходе перемножителя возникает заметный импульс. Если это совершенно разные «лица», то вместо импульса возникают слабые хаотические всплески. Так производит разгрузку электрический детектив, отбирая из хаоса помех информацию, запакованную в фазу или форму волны.

Заметим, кстати, что двоичный сигнал Да позволяет обойтись только одним опорным сигналом. При этом сигнал Да, например, совпадает с опорным, а сигнал Нет есть тот же сигнал, но перевернутый вверх тормашками, или «манипулированный на 180°». (Тут наша аналогия сигналов и лиц теряется; поворот лица на 180 градусов еще не делают даже всемогущие писатели-фантасты.)

Но у нас нет опорного сигнала! Мы понятия не имеем, каким его выберут наши милые «зеленые человечки». А ведь эти два метода передачи наиболее активны в борьбе с врагом номер один — помехами, и применение их вполне возможно. Как же быть?

При организации связи у себя дома, на своей планете, такая задача тоже иногда возникает, и именно тогда, когда на приеме неизвестен опорный сигнал (или очень сложно его туда сообщать).

Мы, земляне, нашли выход из этого тупика и стали опорный сигнал упаковывать в ту же волну, которая несет и информацию. Вы скажете, что для его приема тоже требуется некий свой опорный! Вовсе нет. Можно, например, сделать так, что каждая предыдущая посылка, будь она Да или Нет, служит опорой для приема последующей. Для случая фазового канала мы уже разбирали работу такого приемника (см. рис. на стр. 117). Так же можно строить передачу и при изменении формы волны. Отрезок шума (сигнал), совпадающий с предыдущим, несет Да, а перевернутый вверх тормашками, вежливее сказать — «умноженный на минус единицу», по отношению к предшествующему — сообщает Нет.

Методы передачи, когда каждая предыдущая посылка является опорной для последующей и в то же время несет свою информацию, получили название относительных.

Эта элементарная идея, вероятно, давно осенила разумные существа, выстреливающие свои сигналы в космос. Ведь они шагают впереди нас по тропе разума. Может, они начали раньше свой путь. Может, быстрее преодолели дистанцию от каменных рубил до повелевания гигантскими потоками энергии.

Так или иначе, но они могут применять относительные методы передачи в посылаемых «ау!» и могут заряжать этими снарядами свои мирные пушки, пока самые дальнобойные из известных на нашей планете.

Допустим, что игреки, нагружая свои Да и Нет на фазу или форму волны, не посылают нам свой опорный сигнал, то есть ведут передачу не относительным методом, а считают, что мы умны и сами догадаемся, какой опорный сигнал надо подать в детектор. Если мы действительно догадаемся это сделать, то и тогда он нам не сослужит службы. Ведь этот наш местный, земной сигнал не прошел сквозь космические джунгли, через которые продирался к нам сигнал игреков. И эти джунгли не искажали, не терзали, не кусали его так, как они это делали с посылками игреков. Более того, каждая такая посылка или их группа искажалась космосом по-своему. Поэтому наш чистый, тепличный опорный сигнал будет слабо похож на приходящий из космоса и принципиально не сможет следить за переменными искажениями космического пришельца. Сходство местного и приходящего сигналов будет пропадать, а следовательно, будет пропадать и стойкость к помехам. При относительном же методе передачи опорная предыдущая посылка, как верный поводырь, бегущая чуть-чуть впереди основной по всей трассе связи, так же как и основная, искажается в пути, и обе искаженные одинаково сохраняют сходство.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука