Читаем Кто вы? полностью

Оказывается, можно. И выручает нас в этом случае большая масса небесных тел. Как движение планет в пространстве, так и их вращение вокруг своих осей происходит сравнительно медленно. Поэтому изменение частоты из-за эффекта Допплера будет тоже происходить медленно. Оператор или автомат вполне могут успевать время от времени подстраивать приемник. Значит, узкополосный приемник пригоден. Но если мы ищем сигнал на волне, например, λ, то надо тщательно обследовать окрестности этой частоты λ ± Δλ для того, чтобы учесть возможные допплеровские сдвиги. С каким же горлом нам следует сооружать приемники — с узким или широченным?

И с тем, и с другим. Энергетические бедняки космоса (цивилизации нашего уровня) ставят скромную задачу — заявить о себе всем цивилизациям в радиусе, доступном их энергетике, сказать, что они есть. Они будут сигналить узкополосными или даже гармоническими колебаниями; на большее у них не хватит пороху. Их сигналы нам надо ловить приборами с узким горлом.

Энергетические короли космоса пойдут дальше; они будут как из пожарного гидранта поливать нас мощным потоком информации. Для ее приема потребуются приемники с гигантским горлом. Но и короли, наверное, будут чередовать свой мощный поток с простым гармоническим колебанием (может, с медленной модуляцией). Это позволит обнаружить их даже узким горлом, и притом на больших дистанциях.

Вырисовывается такая методика поиска: вооружаемся приемником с рядом узких и широких полос пропускания; диапазон его рабочих волн должен лежать в области минимума космических помех. Приемником этим обследуем сначала участки в области естественных стандартов частоты (с учетом эффекта Допплера), как наиболее вероятные для использования, затем уже весь диапазон.

Ох, и нелегкая эта работа — найти в море-океане золотую рыбку!

Радио или свет?

А может, нам сигналят не радиоволнами, а световыми пучками лазера? И погружать невод нужно не в радио-, а в световые волны?

Ведь милый световой зайчик таит, как мы установили, колоссальные возможности. Он может транспортировать информацию в десятки тысяч раз большую, чем радиоволна. Этот узкий, почти параллельный пучок когерентного света, казалось бы, может пронзить любые просторы космоса. Так ли это?

Источник когерентного излучения в лазере, например кристалл, имеет, к сожалению, не бесконечно малые, а конечные размеры. В параллельный же пучок, как доказывается в оптике, можно собрать только излучение точечного источника, то есть источника, имеющего исчезающе малые размеры. Но чем большую мощность луча мы хотим получить, тем больше должны быть размеры излучателя. Следовательно, с надеждой получить от большого лазера абсолютно параллельный пучок света, который не рассеивает свою энергию в пространстве, мы должны проститься.

Вместе с тем лазер позволяет получить очень узкие пучки направленного излучения; в сотни раз более узкие, чем в радиодиапазоне. Раствор когерентного светового пучка лазера может быть сделан порядка десяти секунд, а используя оптические линзы, его можно довести до единиц секунд. Главный же лепесток антенны в сантиметровом радиодиапазоне можно сделать только порядка одного градуса. Следовательно, лазерная установка с оптикой способна сконцентрировать энергию в нужном направлении приблизительно в 300 раз сильнее, чем радиоустановка.

Но не только концентрация войск в направлении удара решает операцию. Не меньшее значение имеет также концентрация войск противника на этом же направлении; в нашем случае — концентрация помех.

Как же выглядит единоборство лазерного сигнала и помех в мире света? Скажем прямо: хуже, чем в радиодиапазоне. Здесь помехи еще сильней наседают на сигнал. Посылающая нам световой привет и информацию игрек-цивилизация, можно сказать, находится в самом логове врага. Ведь она развилась и находится под благодатными лучами своей звезды, своего игрек-солнца. А это же гигантский источник световых помех. Его свет и есть колоссальная помеха для разумных световых сигналов. Звезда излучает свет во всех направлениях (у нее вполне хватает энергии для этого) и во всем световом спектре — от инфракрасного до ультрафиолетового. Значит, куда ни кинь — всюду клин. Куда бы и на какой бы волне ни излучал лазер, вместе с его лучами будут спешить и помехи — лучи родной звезды. Луч лазера будет тонуть в них. И наш земной приемник световых сигналов будет ослеплен звездой. Он не различит слабый искусственный сигнал так же, как днем солнечный свет ослепляет нас и мы не видим звезд на небе.

В более выгодном положении оказываются «дети тьмы», обитатели померкших звезд — черных карликов. Они не знают радости «с песней встречать свое солнце» рано утром и задумчиво провожать его вечером. Зато у них нет и световых помех. Но существование их, как мы уже говорили, весьма проблематично.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука