Задача повышения стабильности частоты появилась уже в линиях связи А. С. Попова. Первые пять десятилетий радиотехника не знала атомных генераторов. За это время были найдены десятки остроумных способов уменьшения хаотической «пляски» частоты. Тут и термостатирование генераторов, тут и схемы компенсации, тут и использование кварцевых пластинок… Но ни один из них не давал практически полного уничтожения этого легкомысленного поведения частоты. Появились даже «теоретики», доказывавшие принципиальную невозможность решения этой задачи. Но оказывается, вопреки этим ученым мужам в Природе издавна существуют такие стандарты частоты. Как мы уже разбирали, при перескоке электрона на более низкий энергетический уровень он излучает именно такое сверхстабильное по частоте колебание. Для его использования надо только заставить электроны дружно прыгать и научиться извлекать их излучения из атомов. Земляне уже овладели этим (для ряда атомов). Игреки же, шагающие где-то впереди по спирали прогресса, тем более владеют этой тайной Природы.
А не примут ли иксы это искусственное излучение за одно из естественных? Нет. Их различить легко. Все естественные излучения имеют широкий спектр. Даже излучение на волнах природных стандартов сильно размыто и имеет спектр в десяток тысяч герц. Искусственно же излучаемое колебание при отсутствии модуляции будет занимать в тысячи раз меньшую полосу. Следовательно, начинать поиск надо с обследования волн природных стандартов с длиной в 21, 18… сантиметров, а также 21/2 · 18/2… сантиметров.
Для поиска такого гармонического сигнала горло приемника может быть взято очень узким — порядка единиц или нескольких десятков герц. Такой приемник сможет принимать и сигналы с медленной модуляцией. Если говорить о сигналах
Например, при полосе приемника
Если же мы таким приемником попытаемся воспринять сигнал с более высокой скоростью передачи, например в 100 посылок в секунду, то потерпим фиаско. Поясним это. Каждая посылка вызывает в контурах приемника свой колебательный процесс. Если этот процесс почти затухает к приходу следующей, то посылки не мешают друг другу. Если нет, то дело плохо, так как каждую посылку начинают подталкивать и давить следом идущие. А разве нельзя посылки призвать к порядку и заставить затухать к приходу следующей?
Конечно, можно! Но сделать это удается единственным способом — расширить горло приемника (чем короче посылки, тем шире должно быть горло).
Представим каждую посылку в виде некой гипотетической птахи. Белая птаха соответствует посылке
Нечто подобное имеет место и при наблюдении локатором нескольких самолетов. Пока самолеты далеко друг от друга, на индикаторе мы их четко различаем. Но вот они сближаются, и наступает такой момент, когда различить отдельные самолеты невозможно: отраженные от них импульсы накладываются друг на друга и образуют хаос.
Мы не знаем, какой длительности посылки начнет выбрасывать в космос игрек-цивилизация. Значит, мы не знаем, какое взять горло приемника. Придется иметь либо набор поисковых приемников с разным горлом, либо вводить его регулировку.
В первом случае можно производить одновременный анализ в разных полосах, во втором — только последовательный.
Набор приемников с разным горлом можно заменить одним, но на его выходе подключить ряд фильтров с различной полосой пропускания и наблюдения вести одновременно на всех фильтрах.
При оценке минимальной полосы пропускания приемника мы молча предполагали, что расстояние между цивилизациями икс и игрек не меняется. На самом деле все небесные тела, как мы видели, находятся в движении относительно друг друга. Поэтому нам не обойти и не объехать эффект Допплера, о котором уже говорили.
Если происходит сближение небесных тел с цивилизациями икс и игрек, то частота принимаемого сигнала будет расти: у световых колебаний это называется синим смещением. Если расстояние увеличивается, то частота уменьшается: для света это красное смещение. Значит, нельзя выбрать приемник с узким горлом в десяток герц?