Итак, теперь мы понимаем, что прогноз погоды может быть точным только в краткосрочной перспективе. Даже с самыми мощными суперкомпьютерами, какие только возможны, долговременные прогнозы погоды всегда будут ничуть не лучше простых догадок. Что ж, не зря говорят – только дурак предсказывает погоду. И хотя погода традиционно считается одной из безопасных тем для обсуждения, она, возможно, больше не будет таковой на некоторых званых обедах. Если наличие хаотических систем в природе (ложка дегтя, которую добавил в бочку меда Пуанкаре) ограничивает нашу способность делать правильные предсказания с любой степенью точности, используя детерминистические законы, то физики оказываются в затруднительном положении. Ведь это означает, что
Примерно пять десятилетий теория хаоса почти не привлекала к себе внимания. Квантовая механика – вот чем пестрели заголовки, и большинство физиков сосредоточилось на микроскопическом: на атомах, молекулах и субатомных частицах, – а не на мячах в моей гостиной или небе Пуанкаре. То, что они открывали, привело мир физики в смятение. Триста лет все благодушно допускали, что законы Ньютона применимы абсолютно всегда. И вот ученые обнаружили, что атомы не подчиняются так называемым универсальным законам движения. Как ньютоновские законы могут быть фундаментальными, если атомы – то, из чего состоят предметы, – не подчиняются тем же законам, что и сами предметы? Как однажды заметил Ричард Фейнман, исключения доказывают… ложность правила{135}
. Что же все это значило? Атомы, молекулы и субатомные частицы ведут себя не так, как мячи в моей гостиной. На самом деле, они вообще не шарики, а волны! Волны из ничего! Частицы – это порции энергии с волновыми свойствами.В квантовом мире происходят сумасшедшие вещи. Например, фотоны лишены массы покоя, но обладают энергией и импульсом. Квантовая теория возникла как попытка объяснить, почему электрон остается на своей орбите, что не могли объяснить ни законы Ньютона, ни уравнения Максвелла, лежащие в основе классической электродинамики. Новая теория успешно описала частицы и атомы в молекулах, благодаря ей создали транзисторы и лазеры. Но в квантовой механике таится одна философская проблема. Уравнение Шредингера, детерминистически описывающее, как волновая функция меняется с течением времени (уравнение, кстати, обратимо во времени), не позволяет предсказать, где на своей орбите будет находиться электрон в отдельно взятый момент: оно оперирует только вероятностью. Если попытаться непосредственно определить положение электрона, сам акт измерения исказит значение, которое было бы в отсутствие нашего вмешательства. Это объясняется тем, что определенные пары физических свойств связаны между собой особым образом: оба не могут быть известны одновременно, и чем точнее известно одно свойство (посредством измерения), тем менее точно – другое. В случае электрона на орбите такая пара свойств – координата и импульс. Чем точнее мы определяем координату, тем меньше можем сказать об импульсе, и наоборот. Физик-теоретик Вернер Гейзенберг назвал этот феномен принципом неопределенности. И эта неопределенность вовсе не обрадовала физиков с их детерминистскими взглядами, но подтолкнула к новому образу мышления. Более полувека назад Нильс Бор в своих гиффордских лекциях, которые он читал в 1948-1950 годах, и даже еще раньше, в статье 1937 года, уже начал сдерживать детерминизм, когда сказал: “Нам пришлось… отказаться от идеала причинности в атомной физике”{136}
. Гейзенберг пошел еще дальше: “Я верю, что индетерминизм, то есть отказ от неукоснительного требования причинности, необходим”{137}.